

Рис. 2. Длительность критической работы (обработка на присадочном станке) до перевода ресурса

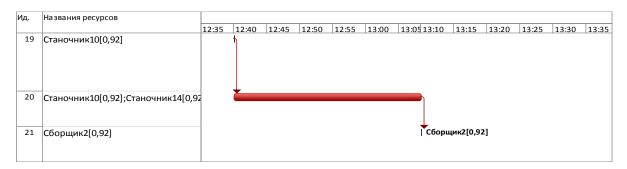


Рис.3. Длительность критической работы(обработка на присадочном станке) после перевода ресурса Таблица

Сравнение эффективности различных способов планирования производства

	Затраты времени на этапы проекта при различных способах планирования, ч		
Показатели планирования	Планирование	Планирование с использо-	Планирование с исполь-
	«как есть»	ванием ручных способов	зованием программного
		расчета сетевого графика	продукта MSProject 2010
Длительность планирования про-	0	24,0	8,0
изводства	Ü	24,0	8,0
Длительность производственного	56,0	34,3	31,9
цикла	30,0	34,3	31,9
Итоговая длительность планирова-	56,0	58,3	39.9
ния и производства	30,0	38,3	39,9

БИБЛИОГРАФИЧЕСКЙ СПИСОК

- 1. Данилов Ю.П., Лебедев И. А. Использование методов сетевого планирования для оптимизации последовательности запуска в обработку деталей кухонной мебели // Актуальные направления научных исследований XXI века: теория и практика: сб. научных тр. по материалам международной заочной науч.-практ. конф. 2014 г. № 4. Ч. 2. С. 291–295.
- 2. Лебедев И.А., Данилов Ю.П. Построение сетевой модели технологического процесса изготовления модульных кухонных гарнитуров //Студенты и молодые ученые КГТУ производству: материалы 66-й межвузовской науч.-техн. конф. В 2 т. Т. 2. Кострома, 2014. С. 135–136.
- 3. Лебедев И.А. Оптимизация оследовательности запуска в обработку деталей кухонных гарнитуров // Студенты и молодые ученые КГТУ производству: материалы 66-й межвузовской науч.-техн. конф. в 2 т. Т. 2. Кострома, 2014. С. 136–137.

УДК 674.028.6/.7

ГНУТЬЕ ДРЕВЕСИНЫ

И.П. Демитрова,

канд. биол.наук, доцент, ФГБОУ ВПО «ПГТУ», г. Йошкар-Ола, РФ.

М.В. Алексеев, М.А. Береснев, В.Э. Калинина, Е.Н. Караваев, студенты ФГБОУ ВПО «ПГТУ», г. Йошкар-Ола, РФ. xolunica@mail.ru

В статье рассматриваются вопросы гнутья древесины.

В настоящее время наблюдается рост интереса потребителей к изделиям из массивной древесины, имеющим сложные криволинейные гибкие формы. Использование массивной гнутой древесины востребовано не только для производства мебели, но и для деталей декора интерьера, а также окон,

дверей, перил лестниц, изготовления музыкальных инструментов, строительства лодок и других конструкций. Способствует этому и вновь возникший интерес дизайнеров к художественной выразительности линий стиля «Модерн» повсеместно господствовавшего в начале XX века.

В известных на сегодняшний день технологиях гнутья древесины рекомендуется использовать твердолиственные породы, такие как бук, дуб, вяз, ильм, клён, орех, ясень. Получение деталей криволинейной формы из хвойной древесины гнутьём проблематично. В диссертации М.А. Баяндина [1] приведены результаты исследований повышения деформативности хвойной древесины с целью гнутья. Автором отмечено, что причиной низкой способности к гнутью хвойной древесины, являются особенности надмолекулярного строения лигнина - плотность связей между макромолекулами. Для повышения деформативности этой древесины, необходима частичная деструкция лигнина.

Гнутью подвергают брусковые заготовки, как из массивной, так и клееной древесины. Кроме рекомендаций по выбору породы древесины существуют рекомендации к её качеству, а именно особое внимание рекомендуется обращать на недопустимые для данных технологий пороки древесины, такие как наклон волокон, свилеватость, завитки, сучки. Наличие которых приведет к растрескиванию и нестабильности формы. Непосредственно перед операцией гнутья древесину обрабатывают с целью увеличения её пластичности, т.е. способности изменять свою форму без разрушения под влиянием внешних сил и сохранять эту форму после прекращения действия этих сил. Чаще всего эта обработка сводиться к обработке древесины насыщенным паром под низким давлением 0,02...0,05 МПа при нагревании до 80...120 °C, иногда с предварительным её модифицированием. В качестве модификаторов могут применятся: раствор аммиака, глицерин, акустическая сода, этиловый спирт, перекись водорода, водный раствор карбамида. В ряде работ [1, 2] отмечается, что оптимальная влажность древесины при гнутье должна соответствовать 25...35% влажности, Продолжительность обработки паром при атмосферном давлении рекомендуется в течении 20...25 минут на каждый сантиметр толшины заготовки. Соотношение толщины заготовки и минимального радиуса, на который можно согнуть древесину без разрушения для некоторых пород: бук – 10/25 (т.е. если заготовка толщиной в 10 мм, то минимальный радиус будет 25 мм); дуб -10/40; береза -10/57; ель -10/100; сосна -10/110 [4, 5]. На это соотношение большое влияние оказывает значение плотности древесины, которое сильно колеблется не только внутри одной породы, но даже внутри одного ствола, а также направление гнутья относительно радиального или тангенциального направления волокон.

Согнутая и зафиксированная в требуемом положении заготовка должна оставаться в зафиксированном состоянии до полного высыхания и стабилизации структуры элементов клеточной стенки древесины. Время этого технологического этапа зависит от формы заготовки способа обработки. После снятия фиксаторов, заготовка распрямляется на некоторую величину, которую нужно учитывать при изготовлении шаблонов и форм.

Возрастающий интерес к конструкциям из массивной древесины, к экологически чистым материалам, высокие требования к дизайну мебельных конструкций определяют запросы рынка и, следовательно, определяют тенденции в технологии и производстве изделий из древесины.

СПИСОК ЛИТЕРАТУРЫ

- 1. Баяндин М.А. Повышение деформативности хвойной древесины с целью гнутья: автореф. дис. ... канд. техн. наук:05.21.05 / Баяндин Михаил Андреевич. Красноярск, 2010. 51 с.
- 2. Боровиков А. М. Влияние температуры и влажности на упругость, вязкость и пластичность древесины: автореф. дис. ... канд техн. наук: 05.21.05. Воронеж, 1970. 31 с.
- 3. Данков А. С. Проблемы и перспективы гнутья массивной древесины // Лес. Наука. Молодежь: сб. науч. тр. / ВГЛТА. Воронеж, 2006. С. 288–290.
- 4. Леонтьев И.И., Абухов Л. Г. Производство гнутой мебели. –М.-Л.: Гослесбумиздат, 1954. 120 с.
- 5. Манкевич Л. А. Основы гнутья древесины. Минск, 1961. 271 с.

УДК 674.4

САПР «К3-МЕБЕЛЬ»

Е.С. Ермаков,

канд. техн. наук, ННГУ, г. Нижний Новгород, РФ

Статья знакомит читателей с программным комплексом «КЗ-Мебель», предназначенным для автоматизированного проектирования, подготовки производства и изготовления корпусной мебели.

ООО Центр «ГеоС» (г. Нижний Новгород) – российский разработчик программного обеспечения в области автоматизированного проектирования (CAD/CAM). Центр «ГеоС» учреждён в июне 1994 года в г. Нижний Новгород и объединил в своих рядах лучших специалистов в области разработки программных продуктов в сфере 3D-моделирования. Одним из основных продуктов компании является программа «К3-Мебель» – комплексное приложение для проектирования, производства и продажи