МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ОПТИКА

Направление подготовки – 03.03.02 «Физика» Направленность – «Физика»

Квалификация (степень) выпускника: Бакалавр

Кострома 2021

Рабочая программа дисциплины «Оптика» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования направления подготовки 03.03.02–Физика, утвержден 07.08.2020 г., приказ № 891

Разработал: Галанцева М.Л., к.ф.-м.н.,доцент

Рецензент: Шадрин Сергей Юрьевич, заведующий кафедрой общей и теоретической физики, к.т.н., доцент

УТВЕРЖДЕНО:

Заведующий кафедрой общей и теоретической физики Шадрин Сергей Юрьевич, к.т.н., доцент

1. Цели и задачи освоения дисциплины

Основной целью данного курса является подготовка бакалавров физики к научноисследовательской, научно-инновационной, организационно-управленческой деятельности в научно-исследовательских институтах, лабораториях, конструкторских или проектных бюро, на предприятиях путем формирования соответствующих компетенций.

В результате изучения учебной дисциплины «Оптика» у обучаемых должна быть сформирована следующая компетенция:

способен применять базовые знания в области физико-математических и (или)
 естественных наук в сфере своей профессиональной деятельности (ОПК-1)

2. Перечень планируемых результатов обучения по дисциплине

В результате изучения дисциплины «Оптика» обучаемые должны

Освоить компетенцию:

ОПК-1: способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности.

Код и содержание индикаторов компетенции

ОПК-1.3.:Использует базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач.

В результате освоения дисциплины обучающийся должен:

знать

- природу и свойства оптического излучения, процессы его распространения, явления взаимодействия света и вещества, законы геометрической, волновой и квантовой оптики.
- приемы использования информационно-коммуникационных технологий для решения задач профессиональной деятельности, в частности интернет-ресурсы, отражающие состояние изученности проблем оптических явлений.

уметь

- объяснять закономерности взаимодействия света и вещества с точки зрения корпускулярной и волновой теории
- решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры, в частности уметь самостоятельно разработать стратегию поиска необходимой научной информации, а также индивидуальный план освоения дополнительного материала.

владеть

- методами анализа физической ситуации при разработке модели физического явления и выборе способа решения физической задачи
 - навыками решения физических задач.

3. Место дисциплины в структуре ОП ВО

Дисциплина «Оптика» изучается в пятом семестре и относится к обязательной части образовательной программы подготовки бакалавров физики. Содержание дисциплины охватывает основные сведения о волновой и корпускулярной природе света, свойствах оптического излучения, процессах его распространения и явлениях, наблюдаемых при взаимодействии света и вещества; устройстве спектральных оптических приборов, принципах действия и устройстве квантовых генераторов, элементах оптики анизотропных сред, квантовой и нелинейной оптики. Задачей курса является также развитие физического мышления и расширение кругозора при изучении законов природы.

Перед изучением дисциплины «Оптика» обучающийся должен иметь представления об основных свойствах света, законах геометрической и волновой оптики на уровне курса физики средней школы, фундаментальных законах сохранения и важнейших первых принципах физики. В дальнейшем данная компетенция продолжит формироваться в рамках дисциплин: «Атомная и ядерная физика», «Теоретическая механика», «Теория поля», «Квантовая теория», «Уравнения математической физики».

Освоение данной дисциплины необходимо как предшествующее для прохождения производственной практики, написания курсовой и выпускной квалификационной работы, а также для следующих профильных дисциплин: «Геофизика», «Астрофизика», «Физика твердого тела».

4. Объем дисциплины (модуля)

4.1. Объем дисциплины в зачетных единицах с указанием академических (астрономических) часов и виды учебной работы Объем дисциплины и виды учебной работы

Виды учебной работы,	Очная форма
Общая трудоемкость в зачетных единицах	5
Общая трудоемкость в часах	180
Аудиторные занятия в часах, в том числе:	118
Лекции	34
Практические занятия	84
Лабораторные занятия	_
Самостоятельная работа в часах	62
Форма промежуточной аттестации	Экзамен 5
	семестр

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма
Лекции	34
Практические занятия	84
Лабораторные занятий	_
Консультации	2
Зачет/зачеты	_
Экзамен/экзамены	0,35
Курсовые работы	_
Курсовые проекты	_
Всего	120,35

5.Содержание дисциплины (модуля), структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

		j rediron gnegnivimizi			
No	Название раздела, темы	Всего	Аудиторные		
		час	Лекц.	Практ.	Самост. работа
1	Основы электромагнитной теории света.	10	2	6	2
2	Явление интерференции света. Когерентность волн. Многолучевая интерференция	16	4	10	2

3	Явление дифракция. Понятие о теории дифракции Кирхгофа.	18	4	10	4
4			4	12	4
5	Поляризация света. Отражение и преломление света. Световые волны в анизотропных средах. Интерференция поляризованных волн. Индуцированная анизотропия оптических свойств.	20	4	12	4
6.	Дисперсия света. Основы оптики металлов. Рассеяние света в мелкодисперсных и мутных средах.	18	4	10	4
7	Классические модели излучения разреженных сред. Тепловое излучение конденсированных сред	14	4	8	2
8	Основы квантовой теории излучения Основные представления о квантовой теории излучения света атомами и молекулами. Усиление и генерация света.	16	4	10	2
9	Нелинейные оптические явления.	12	4	6	2
	Экзамен	36		_	36
	Всего	180	34	84	62

5.2. Содержание дисциплины

- **TEMA 1.** Основы электромагнитной теории света. Уравнение сферической и плоской волны. Вектор Умова-пойнтинга. Фотометрия. Фурье-анализ и синтез волновых полей. Фазовая и групповая скорость света. Формула Рэлея.
- **TEMA 2.** Явление интерференции. Когерентность волн. Интерференционные схемы. Интерференция в тонких плёнках. Многолучевая интерференция.
- **ТЕМА 3.** Явление дифракции. Принцип Гюйгенса-Френеля. Понятие о теории дифракции Кирхгофа. Характеристики дифракционной решетки. Дифракция и спектральный анализ.. Дифракция на многомерных структурах. Основы голографии.
- **ТЕМА 4.** Геометрическая оптика. Законы геометрической оптики. Принцип Ферма. Оптическая сила поверхности, линз, зеркал. Формула Аббе. Теория аберраций. Оптические приборы.
- **TEMA 5.** Поляризация света. Отражение и преломление света на границе раздела изотропных диэлектриков. Световые волны в анизотропных средах. Интерференция поляризованных волн. Индуцированная анизотропия оптических свойств.
- **TEMA 6.** Взаимодействие излучения с веществом. Дисперсия света. Нормальная и аномальная дисперсия.. Основы оптики металлов. Рассеяние света в мелкодисперсных и мутных средах. Закон Бугера-Ламберта-Бера.
- **TEMA 7.** Классические модели излучения разреженных сред. Тепловое излучение конденсированных сред. Законы теплового излучения. Гипотеза Планка о квантах.
- **TEMA 8.** Основные представления о квантовой теории излучения света атомами и молекулами. Усиление и генерация света. Лазеры.
 - **ТЕМА 9.** Нелинейные оптические явления.

6. Методические материалы для обучающихся по освоению дисциплины

Для руководства самостоятельной работой студентов издано учебное пособие: Галанцева М.Л., Моисеев Б.М. Оптика: методические рекомендации для организации самостоятельной работы студентов.— Кострома: Изд-во КГУ им. Н.А.Некрасова, 2007 - 91 стр. (см. отдельный файл).

В пособии даны подробные рекомендации для самостоятельной подготовки студентов к семинарским и лабораторным занятиям по оптике в рамках курса общей физики. Приведены вопросы для самоконтроля, тренировочные и тестовые учебно-исследовательские задания для формирования экспериментальных, графических и расчетно-аналитических умений по всем темам курса, а также список литературы с указанием глав, параграфов и номеров задач для изучения каждой темы.

Методика организации самостоятельной работы студентов подробно изложена в статье: Галанцева М.Л., Моисеев Б.М. Методическое сопровождение самостоятельной работы студентов по курсу оптики// Актуальные проблемы преподавания информационных и естественнонаучных дисциплин / Материалы II Всероссийской научно-методической конференции. – Кострома: КГУ им. Н.А.Некрасова, 2008.- с. 28-36.

В качестве рекомендаций можно выделить следующие особенности организации учебного процесса по курсу оптики:

На первой неделе 4 семестра преподаватель **доводит** до сведения студентов **информацию** о содержании и объеме самостоятельной работы по курсу, формах контроля, сроках отчетности, контрольных работах, методике проведения зачета и экзамена в конце семестра, учебной литературе, в том числе о структуре пособия.

На первом <u>вводном</u> практическом (или лабораторном) занятии, когда у студентов ещё нет ни лекций, ни конспектов, ни пособий их следует **познакомить** с помощью демонстрационного эксперимента **с основными оптическими явлениями**, которые будут изучаться в курсе. Такая методика проведения вводного занятия преследует следующие цели:

- сформировать представление об <u>экспериментальном базисе</u> оптических теорий (теории оптических изображений. волновой теории);
 - обзорно повторить основные понятия и законы школьного курса оптики;
- познакомить студентов с процессом физического моделирования; с помощью простейших оптических инструментов показать модели глаза, перископа, солнечного и лунного затмений., фотоаппарата, телескопа, волоконно- оптических устройств, призменного и дифракционного спектрографов и др.
- вызвать интерес к предмету; с помощью *проблемных* вопросов настроить на творческое отношение к решению трудных вопросов;
- установить психологический контакт и создать атмосферу творческого сотрудничества в процессе совместного поиска объяснения загадочных пока оптических явлений;
- провести качественную предварительную диагностику остаточных знаний и уровня логического мышления, выявить группу наиболее сильных и наиболее слабых по уровню подготовки студентов.

В структуре курса оптики следует выделить три блока: *содержательный* (он нормируется госстандартом образования), *операционно-деятельностный* (поэтапная учебная самостоятельная работа студента в терминах действий: найти. изучить, выделить. обосновать. объяснить, написать, оценить, изобразить, перечислить, вывести формулу, дать определение, решить задачу) и *организационный* (нормирование сроков выполнения заданий и формы контроля). Второй и третий блоки подробно представлены в пособии.

На занятиях студент знакомится со структурой физической теории, с методологией научного познания, с двумя методами процесса познания (теоретическим и экспериментальным) на примере исторического развития взглядов на природу света и поэтапного формировании научной физической картины мира.

При чтении лекционного курса нужно учитывать общий уровень развития и уровень физико-математической подготовки студентов. Поэтому, кроме опоры на один из из основных дидактических принципов — принцип развития, лектор должен опираться на два других важнейших принципа обучения — принцип доступности и принцип поэтапного формирования учебных умений, например, при изучении сначала геометрического, затем дифракционного, потом голографического изображений объектов; другой пример — описание дифракционных картин с волновой и квантовой точек зрания.. Такой подход позволит сформировать базовую систему знаний на основе экспериментального метода и первичного обобщения на уровне понятий и законов с последующим теоретическим обобщением на уровне теории и естественнонаучной картины мира.

На практическом занятии помимо традиционного метода решения типовых задач на доске следует применять сочетание теоретического и экспериментального методов. Разработана методика проведения практического занятия по решению задач (тема «Дифракция света») комплексным методом, при котором расчетно-аналитический метод анализа дифракционных картин на различных преградах сочетается с экспериментальным. Комплексный метод объединяет репродуктивный. эвристический и исследовательский подходы к решению задачи, стимулирует учебно-познавательную деятельность студентов. Детально методика описана в статье: Галанцева М.Л., Жиров А. В. Экспериментальные задачи по оптике // Актуальные проблемы преподавания информационных и естественнонаучных дисциплин / Материалы V Всероссийской научно- методической конференции. – Кострома: КГУ им. Н.А.Некрасова, 2011.- с. 38 – 41.

С целью расширения кругозора и формирования научного стиля мышления студентов следует привлекать в качестве иллюстративного материала большой круг оптических явлений, наблюдаемых в природе и практической деятельности человека. Разработана методика проведения экскурсии учащихся с целью наблюдения оптических явлений в природе. Экскурсию можно сопровождать анализом оптических явлений на картинах великих живописцев (см. статью: Баранова Ю.Е., Галанцева М.Л. Программа элективного курса для предпрофильной подготовки «Удивительная оптика» // Актуальные проблемы преподавания информационных и естественнонаучных дисциплин / Материалы II Всероссийской научно- методической конференции. – Кострома: КГУ им. Н.А.Некрасова, 2009.- с. 18 – 22.

На лекциях используется в основном *объяснительно-иллюстративный* метод изложения материала опорой на *демонстрационный* эксперимент по геометрической оптике (линзы, оптические переносные приборы, набор оптических деталей, оптическая скамья с рейтерами, осветителем, крепежными элементами) и волновой оптике (лазеры, дифракционные гониометры, решетки, щели; установка сантиметровыми электромагнитными волнами. и *наглядные* пособия: таблицы, плакаты, фотографии, учебные компьютерные фильмы, презентации, экскурсии, репродукции картин великих художников с изображением оптических явлений альбомы с иллюстративными материалами к практическим занятиям в неспециализированных аудиториях. Студентов следует познакомить с методами проблемной постановки вопросов как при проведении демонстрационного эксперимента, так и при решении экспериментальных и расчетных физических задач.

6.1. Самостоятельная работа обучающихся по дисциплине (модулю

Для руководства самостоятельной работой студентов издано *учебное пособие*: Галанцева М.Л., Моисеев Б.М. **Оптика: методические рекомендации для организации самостоятельной работы студентов.**— Кострома: Изд-во КГУ им. Н.А.Некрасова, 2007 - 91 стр.

№	Название раздела,	цела, Задание	Методические Форма
312	темы	Заданис	Часы рекомендации поконтроля

				выполнению задания	
1	Основы электромагнитной теории света.	Изучение литературы. Решение индивидуальных заданий	2	С.6-9 вышеуказанного пособия	Письменный опрос
2	Явление интерференции. Когерентность волн. Многолучевая интерференция.	Решение индивидуальных заданий	2	С.10-23 пособия	Защита дом. самостоят работы. Тест.
3	Явление дифракции. Понятие о теории дифракции Френеля, Кирхгофа.	Изучение литературы, индивидуальные задания	4	С. 24-32 пособия	Письменный опрос
4	Геометрическая оптика.	Изучение литературы решение индивидуальных заданий	4	С.33-53 пособия	Контрольная работа №1
5	Поляризация света. Отражение и преломление света на границе раздела изотропных диэлектриков.	Изучение литературы, решение индивидуальных заданий	4	С.54-56 пособия	Собеседование
6	Световые волны в анизотропных средах. Интерференция поляризованных волн. Индуцированная анизотропия оптических свойств.	Решение индивидуальных заданий	4	С.56-61 пособия	Тест Контрольная работа № 2
7	Дисперсия света. Основы оптики металлов. Рассеяние света в мелкодисперсных и мутных средах.	Изучение литературы, решение индивидуальных заданий	2	С. 54-55 пособия	Защита дом. самостоят. работы
8.	Основные представления о квантовой теории излучения света атомами и молекулами.	Изучение литературы	2	С.62-68 пособия	Письменный опрос

	Усиление и				
	генерация света.				
9.	Нелинейные	Изучение	2	С.69-70 пособия	Собеседование
	оптические явления.	литературы		C.07 / O HOCOOM	Соосседование

6.2. Тематика и задания для практических занятий

Формой отчетности по данной дисциплине является экзамен. Необходимые и достаточные условия допуска к сдаче экзамена:

- Наличие полного конспекта лекций
- Простейшее понимание изложенного на лекциях материала (умение объяснить физический смысл простейших физических явлений и процессов, условия получения тех или иных формул, закономерностей. Контроль осуществляется с помощью письменного опроса в виде физических диктантов или тестов
 - Защита домашних самостоятельных работ по индивидуальным вариантам.
 - Выполнение двух контрольных работ с положительным результатом.

Ниже приведены примерные **планы семинарских занятий**. Тренировочные задания и вопросы для самоконтроля при подготовке к семинарам даны по пособию (указаны стр.):

Галанцева М.Л., Моисеев Б.М. **Оптика: методические рекомендации для организации самостоятельной работы студентов.**— Кострома: Изд-во КГУ им. Н.А.Некрасова, 2007 - 91 стр. $^{1)}$

Номера задач указаны по задачнику Иродов И.Е. Задачи по общей физике : Учебное пособие. – СПб. : Издательство «Лань», 2001. - 416 с. ^{2):}

Семинар 1-2. Тема: Электромагнитная теория света. Уравнения Максвелла.

Вопросы теории и трениров. задания для сам. раб :с. 6 - 71)

Задачи для разбора с преподавателем: ²⁾ 4.218–4.220;

Задачи для самостоятельной работы: 4.222; 4.228.

Семинар 3-5. Тема: Энергия и импульс электромагнитной волны. Вектор Умова - Пойнтинга.

Вопросы теории и трениров. задания для сам. раб : с. $6 - 7^{1}$)

Задачи для разбора с преподавателем: ²⁾ 4.225-4.227;

Задачи для самостоятельной работы: 4.228 - 4.230.

Семинар 6-8. Тема: Давление света. Опыты Лебедева

Вопросы теории и тренировочные задания для сам. раб :c. $6 - 7^{1)}$

Задачи для разбора с преподавателем: ²⁾ 5.280; 5.281;

Задачи для самостоятельной работы: 5.283; 5.284.

Семинар 9-12. Тема: Интерференция света. Когерентные источники.

Вопросы теории и трениров. задания для сам. раб :c. 10 -23; 14¹⁾

Задачи для разбора с преподавателем: 5. 79;; 5.86;²⁾

Задачи для самостоятельной работы: 5.76. 5.82 - 5.84.

Семинар 13-15. Тема: Расчет длины волны света с помощью интерференционных схем.

Вопросы теории и трениров. задания для сам. раб :c. 10 - 23; $14^{1)}$

Задачи для разбора с преподавателем: 5. 78; 5.73;²⁾

Задачи для самостоятельной работы: : 5.74 - 5.75;

Семинар 16-18. Тема: Интерференция в тонких пленках. Многолучевая интерференция.

Вопросы теории и трениров. задания для сам. раб :c. 10 - 23; $14^{1)}$

Задачи для разбора с преподавателем: 5.81; 5.88; 5.90; 5.93; 5.99;²⁾

Задачи для самостоятельной работы: 5.89; 5.94; 5.96. 5.98; 5.100

Семинар 19-22. Тема: Дифракция света. Принцип Гюйгенса - Френеля.

Вопросы теории и трениров. задания для сам. раб :с. 24 - 32.

Задачи для разбора с преподавателем: 5.105; 5.106;²⁾

Задачи для самостоятельной работы: 5.111; 5.130; 5.131;

Семинар 23-25. Тема: Дифракция Фраунгофера на щели и решетке

Вопросы теории и трениров. задания для сам. раб :с. 24 – 32,29

Задачи для разбора с преподавателем: 5.132; 5.143 -5.146; 5.149;²⁾

Задачи для самостоятельной работы: 5.133; 5.148.

Контрольная работа №1 по теме: «Интерференция и дифракция света»

Семинар 26-27. Тема: Дифракция рентгеновских лучей на кристаллах Дифракция на многомерных структурах

Вопросы теории и трениров. задания для сам. раб: с. 5-13, 17-27, 24 -32, 28.

Задачи для разбора с преподавателем: 5.165 - 5.167;²⁾

Задачи для самостоятельной работы: 5.289; 5.162; 5.164.

Семинар 28-30. Тема: Дисперсия и разрешающая способность спектральных аппаратов.

Вопросы теории и трениров. задания для сам. раб :с. 24 – 29

Задачи для разбора с преподавателем: 5.155;.5.159;²⁾

Задачи для самостоятельной работы: 5.156 - 5. 158

Семинар 31-32. Тема: Отражение и преломление света на границе раздела изотропных диэлектриков. Оптические приборы.

Вопросы теории и трениров. задания для сам. раб: с. 33 - 53; 78 - 85; 36.

Задачи для разбора с преподавателем: 5.15; 5.21; 5.51; 5.49; 5.44;²⁾

Задачи для самостоятельной работы: 5.20;5.43; 5.50; 5.48; 5.51.

Семинар 33-35. Тема: Фазовая и групповая скорости света. Дисперсия света.

Вопросы теории и трениров. задания для сам. раб: с. 6, 46-47

Задачи для разбора с преподавателем: 5.222; $5.223(a)^{2}$

Задачи для самостоятельной работы: 5.223 (б.в); 5.224

Семинар 36-38. Тема: Поляризация света. Типы и методы поляризации. Законы Бугера и Брюстра

Вопросы теории и трениров. задания для сам. раб: с. 54 - 59; 57

Задачи для разбора с преподавателем: 5.172; 5.171; 5.174;5.179; 5.184;²⁾

Задачи для самостоятельной работы: 5.173; 5.177; 5.179; 5.180; 5.188...

Семинар 39. Тема: Двойное лучепреломление. Поляризационные приборы.

Вопросы теории и трениров. задания для сам. раб: с. 54 - 59

Задачи для разбора с преподавателем: 5.185; 5.190;²⁾

Задачи для самостоятельной работы: 5.186; 5.189; 5.177; 5.193.

Семинар 40. Тема: Индуцированная анизотропия оптических свойств

Вопросы теории и трениров. задания для сам. раб: с. 54 - 59

Задачи для разбора с преподавателем: 5.208; 5.209²⁾

Задачи для самостоятельной работы: 5.210; 5.211.

Контрольная работа №2 по теме: «Поляризация света»

Семинар 41. Тема: Тепловое излучение

Вопросы теории и трениров. задания для сам. раб: с. 62 – 66

Задачи для разбора с преподавателем: 5.275; 5.278; 5.263; 5.269.²⁾

Задачи для самостоятельной работы: 5.276; 5.279; 5.262; 5.273.

Семинар 42. Тема: Основы квантовой теории излучения. Нелинейная оптика

Вопросы для подготовки к семинару: с. 67- 68; 69-70.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

а) основная литература:

- 1. Сивухин, Д.В. Общий курс физики : учебное пособие : в 5-х т. / Д.В. Сивухин. 3-е изд., стереот. Москва : Физматлит, 2002. Т. 4. Оптика. 792 с. ISBN 5-9221-0228-1 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=82981 (10.11.2018).
- 2. Савельев, И.В. Курс общей физики / И.В. Савельев; под ред. Л.Л. Енковского. Изд. 3-е, доп., перераб. Москва: Наука, 1970. Т. 3. Оптика, атомная физика, физика атомного ядра и элементарных частиц. 527 с.: ил.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=483316
- 3. Иродов И. Е. Задачи по общей физике : учеб. пособие. 3-е изд., испр. СПб. : Лань, 2001. 416 с.
- 4. Галанцева М. Л. Оптика : метод. рекомендации для организации самостоятельной работы студентов / Костром. гос. ун-т им. Н. А. Некрасова [и др.]. Кострома : КГУ, 2007. 92 с.

б) дополнительная литература:

- 1. Ландсберг Г. С. Оптика : Для вузов. 5-е изд., перераб. и доп. Москва : Наука, 1976. 926 с.
- 2. Сахаров Д. И. Сборник задач по физике для вузов. 13-е изд., испр. и доп. М. : ОНИКС 21 век : Мир и образование, 2003. 400 с.
- 3. Волькенштейн В. С. Сборник задач по общему курсу физики : [учеб. пособие для студентов втузов] : допущено Госкомитетом СССР по нар. образованию / под ред. И. В. Савельева. Изд. 12-е, испр. М. : Наука, 1990. 396 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

1. Элементы большой науки: http://elementy.ru/

Электронные библиотечные системы:

- 1. Университетская библиотека онлайн http://biblioclub.ru
- 2. «Лань» http://e.lanbook.com/
- 3. ЭБС «Znanium»

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория для лекций

Лекционные занятия проводятся в аудиториях с требуемым числом посадочных мест, оборудованные мультимедиа (например, корпус E, № 226, количество посадочных мест – 60, мультимедийный комплекс, включающий экран, компьютер и проектор)

Аудитория для практических занятий:

Корпус Е, № 304, количество посадочных мест – 24.

Аудитории для самостоятельной работы:

Читальный зал корпуса «Е», количество посадочных мест – 22, 9 компьютеров (6 для читателей, 3 для сотрудников);1 сканер.

Читальный зал корпуса «Б1», количество посадочных мест — 200. 3 компьютера для сотрудников; 1 принтер; 1 копир/принтер; 1 проектор; 2 экрана для проектора; 1 ворота «Антивор»; 1 WIFI-точка доступа. Лицензионное ПО: АИБС МаркSOL.

Компьютерный класс, корпус "Е", ауд.227, количество посадочных мест - 16, Блок системный КМ Office T3-4170, монитор Philips. Лицензионное ПО: Windows 8.1 Pro договор № 50155/ЯР4393 от 12.12.2014 с ООО Софт-лайн Проекты, MathCAD Education договор № 208/13 от 10.06.2013 с ООО ЮнитАльфаСофт.