МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Прикладные компьютерные технологии

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Направленность подготовки «Прикладная математика и информатика»

Квалификация (степень) выпускника: бакалавр

Кострома

Рабочая программа дисциплины «Прикладные компьютерные технологии» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 01.03.02 Прикладная математика и информатика (уровень подготовки бакалавриат), утвержденным приказом Министерства образования и науки РФ от 12 марта 2015 года № 228 (рег. 14 апреля 2015 г., № 36844). Год начала подготовки 2017, 2018.

Разработал: Сухов Андрей Константинович, к.фм.н., доцент
подпись
Рецензент: Леготин Денис Леонидович, доцент, к.фм.н., доцент подпись
УТВЕРЖДЕНО:
На заседании кафедры прикладной математики и информационных технологий
Протокол заседания кафедры № 10 от 03.06.2017 г.
Заведхющий кафедрой прикладной математики и информационных технологий Секованов Валерий Сергеевич, д.п.н, к.фм.н., профессор КГУ
ПЕРЕУТВЕРЖДЕНО:
На заседании кафедры прикладной математики и информационных технологий
Протокол заседания кафедры № 9 от 22.05.2018 г.
Заведующий кафедрой прикладной математики и информационных технологий
Секованов Валерий Сергеевич, д.п.н, к.фм.н., профессор КГУ

1. Цели и задачи освоения дисциплины

Цель дисциплины: познакомить студентов с современными методами компьютерными технологиями решения практических задач, основами вычислительных методов решения таких задач, заданных в виде математических уравнений и применение этих методов для математического моделирования различных систем и процессов.

Задачи дисциплины:

- научить применению компьютерных технологий для решения практических задач, заданных в виде математических уравнений;
- приобрести навыки компьютерных вычислений;
- научить работе с вычислительными схемами решения уравнений;
- научить визуализации решений;
- оценивать точность результатов.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен:

знать:

- методы решения уравнений с одной неизвестной;
- методы дихотомии, хорд и касательных;
- методы сеточного разбиения непрерывных функций;
- назначение конечных разностей;
- компьютерные технологии решения дифференциальных уравнений;
- методы оценки погрешности результата.

уметь:

- применять метод графического отделения корней;
- определять погрешность результата решения;
- применять методы Эйлера и Рунге-Кутты для решения дифференциальных уравнений;
- составлять программы вычисления решения;
- проверять устойчивость разностных схем;
- строить графики результата решения.

владеть:

– методами численного решения обыкновенных и дифференциальных уравнений и их систем.

освоить компетенции:

ОПК-3 – способностью к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям.

ПК-2 – способностью понимать, совершенствовать и применять современный математический аппарат.

3. Место дисциплины в структуре ОП ВО

Дисциплина «Прикладные компьютерные технологии» относится к дисциплинам по выбору вариативной части. В отношении технологического содержания она дополняет дисциплины «Дискретная математика», «Языки и методы программирования», «Визуальное программирование». В отношении класса решаемых задач она находится в одном ряду с дисциплинами «Компьютерное моделирование», «Дифференциальные уравнения», «Функциональный анализ».

Для изучения дисциплины «Технологии вычислительной математики» необходимы знания, умения и навыки, формируемые предшествующими дисциплинами «Математический анализ», «Основы информатики», «Численные методы».

4. Объем дисциплины «Прикладные компьютерные технологии» 4.1. Объем дисциплины в зачётных единицах с указанием академических (астрономических) часов и виды учебной работы

Виды учебной работы,	Очная форма	Очно-заочная Заочная
Общая трудоемкость в зачетных	3	
единицах		
Общая трудоемкость в часах	108	
Аудиторные занятия в часах, в том числе:	30	
Лекции	10	
Практические занятия	-	
Лабораторные занятия	20	
Контроль	-	
Самостоятельная работа в часах	78	
Форма промежуточной аттестации	Зачёт – 8	
	семестр	

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма	Очно-заочная	Заочная
Лекции	10		
Практические занятия	-		
Лабораторные занятий	20		
Консультации	0,9		
Зачет/зачеты	0,25		
Экзамен/экзамены	-		
Курсовые работы	-		
Курсовые проекты	-		
Всего	39,25		

5.Содержание дисциплины «Прикладные компьютерные технологии», структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

No	Наименование темы	Всего	Аудиторные занятия			Контроль	Самос.
п/п		з.е./час	Лекции	Практ.	Лабор.		
1.	Решение прикладных	0,61/22	2	-	4	-	16
	задач, задаваемых						
	уравнением с одной						
	неизвестной						
2.	Решение прикладных	0,61/22	2	-	4	_	16
	задач, задаваемых						
	обыкновенным						
	дифференциальным						
	уравнением первого						
	порядка						
3.	Решение прикладных	0,94/34	4	-	6	_	24
	задач, задаваемых						
	системой обыкновенных						
	дифференциальных						
	уравнений первого						
	порядка						
4.	Решение прикладных	0,84/30	2	-	6	-	22
	задач, задаваемых						
	обыкновенным						
	дифференциальным						
	уравнением высшего						
	порядка						
	ИТОГО:	3/108	0	-	0	_	0

5.2. Содержание:

TEMA 1. Решение прикладных задач, задаваемых уравнением с одной неизвестной. Определение уравнения. Графический метод отделения корней. Методы дихотомии, хорд и касательных. Условие прерывания итерационного процесса. Оценка погрешности решения. Визуализация решения.

TEMA 2. Решение прикладных задач, задаваемых обыкновенным дифференциальным уравнением первого порядка. Постановка задачи. Разбиение интервала решения с помощью сетки. Задание сеточной функции. Метод Эйлера. Метод Рунге-Кутты. Оценка погрешности решения с помощью двойного просчета.

TEMA 3. Решение прикладных задач, задаваемых системой обыкновенных дифференциальных уравнений первого порядка. Компьютерная технология решения системы дифференциальных уравнений первого порядка численными методами. Алгоритмизация численного решения. Оценка погрешности решения с помощью двойного просчета.

ТЕМА 4. Решение прикладных задач, задаваемых обыкновенным

дифференциальным уравнением высшего порядка. Задача Коши для дифференциального уравнения высшего порядка. Приведение его к системе дифференциальных уравнений первого порядка. Алгоритмизация численного решения. Оценка погрешности решения с помощью двойного просчета.

6. Методические материалы для обучающихся по освоению дисциплины «Прикладные компьютерные технологии»

6.1. Самостоятельная работа обучающихся по дисциплине

		_	I I		_
No	Раздел (тема)	Задание	Час	Методические	Форма контроля
п/п	дисциплины		Ы	рекомендации	
				ПО	
				выполнению	
				задания	
	Решение	Изучение	6	Используй	
	прикладных задач,	теоретического		те литературу	
1	задаваемых	материала		[1], [2], [5]	Устный опрос
	уравнением с одной				
	неизвестной				
	Решение		8	Используй	
	прикладных задач,	Изучение		те литературу	Индивидуальн
	задаваемых	литературы,		[1], [2], [5]	ое собеседование,
2	обыкновенным	составление			проверка
	дифференциальным	компьютерных			домашних
	уравнением первого	программ			заданий
	порядка				
	Решение	14	1	Используй	Индивидуальн
	прикладных задач,	Изучение	0	те литературу	ое собеседование,
	задаваемых системой	литературы,		[1], [2], [3]	проверка
3	обыкновенных	составление			домашних
	дифференциальных	компьютерных			заданий,
	уравнений первого	программ,			контрольная
	порядка	решение задач			работа
	Решение		1	Используй	
	прикладных задач,	Изучение	2	те литературу	Индивидуальн
	задаваемых	литературы,		[1], [3], [4]	ое собеседование,
4	обыкновенным	составление			проверка
	дифференциальным	компьютерных			домашних
	уравнением высшего	программ			заданий
	порядка	. .			' '

6.3. Тематика и задания для лабораторных занятий

Лабораторные занятия 1–2. Решение прикладных задач, задаваемых уравнением с одной неизвестной.

Для заданной прикладной задачи отделить корни графическим методом, составить программу численного решения уравнения с одной неизвестной. Вычислить результат, определить его точность и построить график решения.

Пабораторные занятия 3–4. Решение прикладных задач, задаваемых обыкновенным дифференциальным уравнением первого порядка.

Для заданной прикладной задачи используя метод Рунге-Кутты, составить программу численного решения обыкновенного дифференциального уравнения первого порядка. Вычислить результат, определить его точность и построить график решения.

Пабораторные занятия 5-7. Решение прикладных задач, задаваемых системой обыкновенных дифференциальных уравнений первого порядка.

Для заданной прикладной задачи используя метод Рунге-Кутты, составить программу численного решения системы обыкновенных дифференциальных уравнений первого порядка. Вычислить результат, определить его точность и построить график решения.

Пабораторные занятия 8-10. Решение прикладных задач, задаваемых обыкновенным дифференциальным уравнением высшего порядка.

Для заданной прикладной задачи используя метод Рунге-Кутты, составить программу численного решения обыкновенного дифференциального уравнения высшего порядка. Вычислить результат, определить его точность и построить график решения.

Вопросы к зачету

- 1. Решение прикладных задач, задаваемых уравнением с одной неизвестной. Определение уравнения. Графический метод отделения корней. Метод дихотомии. Условие прерывания итерационного процесса.
- 2. Методы хорд и касательных. Условие прерывания итерационного процесса. Оценка погрешности решения. Визуализация решения.
- 3. Решение прикладных задач, задаваемых обыкновенным дифференциальным уравнением первого порядка. Постановка задачи. Разбиение интервала решения с помощью сетки. Задание сеточной функции. Метод Эйлера. Оценка погрешности решения.
- 4. Решение прикладных задач, задаваемых обыкновенным дифференциальным уравнением первого порядка. Метод Рунге-Кутты. Оценка погрешности решения с помощью двойного просчета.
- 5. Решение прикладных задач, задаваемых системой обыкновенных дифференциальных уравнений первого порядка. Компьютерная технология решения системы дифференциальных уравнений первого порядка численными методами.
- 6. Алгоритмизация численного решения. Оценка погрешности решения с помощью двойного просчета.
- 7. Решение прикладных задач, задаваемых обыкновенным дифференциальным уравнением высшего порядка. Задача Коши для дифференциального уравнения высшего порядка. Приведение его к системе дифференциальных уравнений первого порядка. Алгоритмизация численного решения. Оценка погрешности решения с помощью двойного просчета.

Для сдачи зачета студент должен представить отчеты по всем расчетным

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины «Технологии вычислительной математики»

а) основная:

- 1. Лапчик, М. П. Численные методы : Учеб. пособие для студ. вузов / М. П. Лапчик, М. И. Рагулина, Е. К. Хеннер ; Под ред. М. П. Лапчика. М. : Академия, 2004. 384 с. (Высшее профессиональное образование). Библиогр.: с. 381. ISBN 5-7695-1339-X : 134.55.
- 2. Волков, Е. А. Численные методы: Учеб. пособие / Е. А. Волков. 3-е изд., испр. СПб.: М.: Краснодар: Лань, 2004. 256 с. (Учебники для вузов. Специальная литература). Библиогр.: с. 244. Предм. указ.: с. 245-248. ISBN 5-8114-0538-3: 139.10.
- 3. Волков, Евгений Алексеевич. Численные методы : учеб. пособие / Волков, Евгений Алексеевич. Изд. 5-е, стер. СПб. : Лань, 2008. 256 с. (Учебники для вузов. Специальная литература). Библиогр.: с. 244. Предм. указ.: с. 245-248. ISBN 978-5-8114-0538-1 : 288.00.

б) дополнительная:

- 4. Вержбицкий, В. М. Основы численных методов: Учеб. для студ. высш. учеб заведений / В. М. Вержбицкий. М.: Высш. шк., 2002. 840 с. Библиогр.: с. 820-828. Предм. указ.: с. 829-838. ISBN 5-06-004020-8: 121.55.
- 5. Исаков, В. Н. Элементы численных методов : Учеб. пособие для студ. пед. высш. учеб. заведений / В. Н. Исаков. М. : Академия, 2003. 192 с. (Высшее образование). Библиогр.: с. 185-186. Предм. указ.: с. 187-189. ISBN 5-7695-0795-0 : 54.90.
- 6. Программа дисциплины "Численные методы" : спец. 010200 "Прикладная математика и информатика" / Костром. гос. ун-т ; сост. С. Б. Козырев. Кострома : КГУ, 2004. 7 с. Библиогр.: с. 6. 5.00.
- 7. Вержбицкий, В. М. Основы численных методов: Учеб. для студ. высш. учеб заведений / В. М. Вержбицкий. Изд. 2-е, перераб. М.: Высш. шк., 2005. 840 с. Библиогр.: с. 820-828. Предм. указ.: с. 829-838. ISBN 5-06-005493-4: 469.00.
- 8. Турчак, Л. И. Основы численных методов: учеб. пособие для студ. вузов / Л. И. Турчак, П. В. Плотников. 2-е изд., перераб. и доп. М.: ФИЗМАТЛИТ, 2003. 304 с. Библиогр.: с. 290-292. Предм. указ.: с. 293-300. ISBN 5-9221-0153-6: 171.33.

- 9. Самарский, А. А. Введение в численные методы : учеб. пособие для вузов / А. А. Самарский ; Москов. гос. ун-т. 3-е изд., стер. М. : Лань, 2005. 288 с. (Классический университетский учебник) (Учебники для вузов. Специальная литература). Библиогр.: с. 281. Предм. указ.: с. 284-286. ISBN 5-8114-0602-9 : 158.13.
- 10. Заварыкин, В. М. Численные методы: [учеб. пособие для студентов физ.мат. спец. пед. ин-тов]: допущено Госкомитетом СССР по народ. образованию / В. М. Заварыкин, В. Г. Житомирский, М. П. Лапчик. М.: Просвещение, 1991. 176 с.: ил. Библиогр.: с. 173 (18 назв.). ISBN 5-09-000599-0: 0.80.
- 11. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы Издатель: БИНОМ. Лаборатория знаний, 2012 biblioclub.ru
- 12. Вержбицкий В. М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения): учебное пособие Издатель: Директ-Медиа, 2013 biblioclub.ru
- 13. Ращиков В. И. Численные методы. Компьютерный практикум Издатель: МИФИ, 2010 biblioclub.ru
- 14. Фомина А. В. Лабораторные работы по курсу «Численные методы». Методические рекомендации для студентов дневного отделения физикоматематического факультета Издатель: Кузбасская государственная педагогическая академия, 2008 biblioclub.ru

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Библиотека КГУ http://library.ksu.edu.ru/
- 2.Национальный открытый университет ИНТУИТ (www.intuit.ru)

Электронные библиотечные системы:

- 3. ЭБС «Лань»
- 4. ЭБС «Университетская библиотека online»
- 5. ЭБС «Znanium»

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для проведения занятий по дисциплине необходим компьютерный класс с проектором. Необходимое программное обеспечение:

- среда программирования;
- офисный пакет.