МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Элементы нелинейной динамики

Направление подготовки 01.03.02 «Прикладная математика и информатика» Направленность подготовки «Прикладная математика и информатика»

Квалификация (степень) выпускника: бакалавр

Кострома 2019

Рабочая	про	гра	мма	дисципл	ины	«Элем	иенты	нелинейной	динал	мики»	разра	ботана	В
соответст	гвии	C	Фе,	деральны	м го	сударс	твенным	образовател	приня	станд	артом	высше	го
образован	кин	ПО	напр	авлению	подг	отовки	01.03.0	2 Прикладная	и мате	матика	и ин	формати	ка
(уровень	подг	ото	вки б	акалаври	ат), ут	гверждё	ённым п	риказом № 9 о	т 10.01	.2019 г.		70074	

Разработал:	_ Секованов Валерий Сергеевич, профессор, д.п.н., к.фм.н.
Рецензент:	_ Благовещенский Владимир Валерьевич, д. фм. н, профессор КГУ
УТВЕРЖДЕНО:	
На заседании кафедры при	кладной математики и информационных технологий, протокол №12
22 мая 2019 г.	
0	икладной математики и информационных технологий алерий Сергеевич, профессор, д.п.н., к.фм.н.

1. Цели и задачи освоения дисциплины

Исторически сложилось, что в нашей стране изучение нелинейной динамики пока не достигли такого масштаба, какой используется в западноевропейских странах. Прежде всего, мы имеем в виду применение нелинейной динамики при создании математических моделей. Однако, как показывают специальные исследования, интерес к нелинейной динамике в РФ в последние годы быстро растет.

Изучение дисциплины «Элементы нелинейной динамика» (Обязательная часть. Блок 1) важно для бакалавров направления подготовки «Прикладная математика и информатика», поскольку имеет многочисленные приложения в различных областях знаний, что положительно влияет на развитие общекультурных, общепрофессиональных и профессиональных компетенций бакалавров.

При изучении дисциплины «Элементы нелинейной динамики» формируется общепрофессиональная компетенция (ОПК-3): Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности.

Индикаторы ОПК 3:

- **ОПК-3.1**. Применяет вычислительные и оптимизационные математические модели при решении задач в области профессиональной деятельности.
- **ОПК-3.2**. Применяет вероятностные и статистические математические модели при решении задач в области профессиональной деятельности.
- **ОПК-3.3**. Исследует динамические математические модели, анализирует результаты исследований, формулирует выводы о поведении динамической системы.
- ОПК-3.4. Использует математические модели для построения компьютерных изображений.

Бакалавры углубленно изучают непрерывные и дискретные динамические системы, реализуют новые математические методы и знакомятся с идеями синергетики – нового бурно развивающегося научного направления.

При изучении выше указанной дисциплины бакалавры знакомятся с одним из универсальных методов решения различных задач (исследование аттракторов нелинейных отображений, исследование фракталов и хаоса в динамических системах, создание математических моделей и др.), что положительно влияет на развитие их общекультурных компетенций. Парадигма изучения дисциплины «Нелинейная динамика» возникла в связи с потребностью решения различных задач производственно-технологической деятельности. Она основана на идее создания математической модели объекта природы, процесса деятельности с использованием ИКТ. Это позволит будущему специалисту в области прикладной математики и информатики сконцентрироваться на изучении и использовании ИКТ, которые при исследовании математических методов И (аттрактор преобразования Эно, аттрактор равноправную роль Лоренца, компьютерный эксперимент, компьютерная модель и др.).

Цель изучения дисциплины: «Элементы нелинейной динамики» – познакомить бакалавров с нелинейными динамическими системами

Задачи изучения дисциплины: «Элементы нелинейной динамики»:

- изучить основы нелинейных дискретных динамических систем;
- изучить основы нелинейных непрерывных динамических систем;
- привести примеры нелинейных математических моделей;
- выработать практические навыки использования методов нелинейной динамики при создании математических моделей.

Данный курс носит прикладной характер. В связи с этим для его успешного освоения магистру необходимо владеть одним из языков программирования высокого уровня и уметь работать с математическим пакетом. Выбор языка, системы программирования и матпакета определяется преподавателем. Дисциплина «Элементы Нелинейной динамики» (Обязательная часть. Блок 1) знакомит с методами современной математики. В отношении технологического содержания она дополняет дисциплины «Методы вычислительной математики», «Основы синергетики», «Методы моделирования фрактальных множеств»,

В отношении класса решаемых задач она находится в одном ряду с дисциплинами «Основы синергетики», «Методы моделирования фрактиальных множеств».

«Методы оптимизации», «Математические основы компьютерной графики

Бакалавры, завершившие изучение дисциплины «Элементы нелинейной динамики» должны знать:

- основные понятия нелинейной динамики бифуркация, хаос, фрактал, катастрофа;
 - нелинейные математические модели;
 - что такое аттрактор, бассейн притяжения, циклическая точка;
 - что такое аттрактор Лоренца, множества Жюлиа.

Бакалавры, завершившие изучение дисциплины «Элементы нелинейной динамики» должны уметь:

- строить нелинейные математические модели с помощью фрактального анализа компьютерных технологий;
- строить фазовые портреты, графики итераций функций и диаграмм Ламерея, множества Жюлиа и Мандельброта;
- решать нелинейные уравнения и вычислять знаменитые константы с помощью метода итераций;

создавать нелинейные математические модели различных объектов и явлений.

Бакалавры, завершившие изучение дисциплины «Элементы нелинейной динамики» должны владеть:

- фрактальным анализом;
- методом итераций;
- методами теории катастроф.

Бакалавры, завершившие изучение дисциплины «Элементы нелинейной динамики» должны освоить индикаторы компетенции ОПК-3: ОПК-3.1, ОПК-3.2, ОПК-3.3, ОПК-3.4 с помощью которых формируется компетенция ОПК-3: Способен совершенствовать и реализовывать новые математические методы решения прикладных задач.

2. Перечень планируемых результатов обучения по дисциплине «Нелинейная динамика»

В результате освоения дисциплины обучающийся должен: сформировать индикаторы ОПК-3:

ОПК-3.1. Применяет вычислительные и оптимизационные математические модели при решении задач в области профессиональной деятельности.

ОПК-3.2. Применяет вероятностные и статистические математические модели при решении задач в области профессиональной деятельности.

ОПК-3.3. Исследует динамические математические модели, анализирует результаты исследований, формулирует выводы о поведении динамической системы.

ОПК-3.4. Использует математические модели для построения компьютерных изображений.

На базе ОПК-3.1 — ОПК-3.4 обучающийся должен освоить компетенцию ОПК-3: Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности

3. Место дисциплины в структуре ОП ВО

Дисциплина «Элементы нелинейной динамики» изучается в блоке (Обязательная часть. Блок 1) в шестом семестре. Для изучения дисциплины «Элементы нелинейной динамики» необходимы знания, умения и навыки, изучаемыми дисциплинами «Математический анализ», «Аналитическая геометрия», «Комплексный анализ», «Прикладное программирование», «Дифференциальные уравнения», «Математические основы компьютерной графики».

Изучение дисциплины «Элементы нелинейной динамики» является основой для освоения дисциплин: «Методы моделирования фрактальных множеств», «Основы синергетики», «Нейросетевое моделирование», «Методы моделирования физических полей».

Дисциплина «Элемпенты нелинейной динамики» интегрирует с дисциплинами «Основы синергетики», «Методы моделирования фрактальных множеств», «Математический анализ», «Комплексный анализ», «Аналитическая геометрия», «Линейная алгебра», «Дифференциальные уравнения», «Физика», «Методы вычислительной математики». Данная интеграция включает в себя логическую и содержательную взаимосвязь, поскольку при ее изучении используются как математические методы, так и ИКТ.

Компетенция ОПК-3 дополнительно формируется дисциплинами: «Методы

вычислительной математики», «Методы оптимизации», «Математические основы компьютерной графики», «Основы синергетики», «Методы моделирования фрактальных множеств» и учебной практикой.

.

4. Объем дисциплины

4.1. Объем дисциплины в зачетных единицах с указанием академических часов и виды учебной работы

Виды учебной работы,	Очная форма
Общая трудоемкость в зачетных единицах	3
Общая трудоемкость в часах	108
Аудиторные занятия в часах, в том числе:	34
Лекции	16
Практические занятия	_
Лабораторные занятия	18
Самостоятельная работа в часах	74
Форма промежуточной аттестации	зачет

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма
Лекции	16
Практические занятия	_
Лабораторные занятий	18
Консультации	_
Зачет/зачеты	0,25
Экзамен/экзамены	
Курсовые работы	
Курсовые проекты	
Всего	34,25

5. Содержание дисциплины «Элементы нелинейной динамики», структурированное по темам, с указанием количества часов и видов занятий

5.1. Тематический план дисциплины «Элементы нелинейной динамики»

No		Всего		Аудиторные занятия			Сам.
п/п	Наименование темы	з.е./ч	Всего	Лекции	Лабор.	Практ.	работа
1	Линейные						
	динамические	0.3/12	4	2	2	_	8
	системы	0.3/12		2	2		
2							
	Нелинейные	0.39/14	4	2	2	_	10
	динамические	0.55/11		_	_		10
	системы						

3	Дискретные и	0.39/14	4	2	2	_	10
	непрерывные нелинейные						
	динамические						
	системы						
4	Создание математических моделей с помощью нелинейной динамики объектов	0.39/14	4	2	2	_	10
	и процессов, происходящих в природе						
5	Создание математических моделей с помощью нелинейной динамики в демографии	0.39/14	6	2	4	_	8
6	Создание математических моделей с помощью нелинейной динамики в экономике	0.3/12	4	2	2	_	8
7	Создание математических моделей с помощью нелинейной динамики в физике	0.39/14	4	2	2	_	10
8	Создание математических моделей с помощью нелинейной динамики в биологии	0.39/14	4	2	2	_	10
	итого:	108	24	16	18		74

5.2. Содержание:

Тема 1. Линейные динамические системы. Знакомство с линейной динамической системой. Примеры.

Тема 2. Нелинейные динамические системы. Понятие нелинейной динамической системы. Примеры нелинейных динамических систем. Бифуркация, цикл, аттрактор.

Тема 3. Дискретные и непрерывные нелинейные динамические системы. Понятие дискретной нелинейной динамической системы. Примеры

нелинейных дискретных динамических систем. Понятие непрерывной нелинейной динамической системы. Примеры нелинейных непрерывных динамических систем.

- **Тема 4.** Создание математических моделей с помощью нелинейной динамики объектов и процессов, происходящих в природе. Примеры математических моделей объектов и процессов в природе, созданных с помощью нелинейных динамических систем.
- **Тема 5.** Создание математических моделей с помощью нелинейной динамики в демографии. Модель Мальтуса и ее усовершенствование.
- **Тема 6.** Создание математических моделей с помощью нелинейной динамики в экономике. Модель роста капитала.
- **Тема 7. Создание математических моделей с помощью нелинейной динамики в физике.** Модель Эдварда Лоренца, Фазовые переходы.
- **Тема 8. Создание математических моделей с помощью нелинейной** д**инамики в биологии.** Модели роста популяций с помощью нелинейных дискретной и непрерывной динамических систем. Сравнение данных моделей.

6. Методические материалы для обучающихся по освоению дисциплины

6.1. Самостоятельная работа обучающихся по дисциплине «Элементы нелинейной динамики»

№	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнен. задания	Формы контроля
1	Понятие дискретной и математической модели	Изучение теоретического материала. Принципы дидактики	8	Используйте литературу [1], [4]	Устный опрос
2	Периодические точки, циклы, орбиты, аттракторы	Изучение литературы, составление компьютерных программ. Методы дидактики	10	Используйте литературу [2], [5]	Реферат
3	Примеры дискретных и математических моделей в биологии	Изучение литературы, составление компьютерных программ, решение задач. Формы обучения.	10	Используйте литературу [2], [5]	Индивид уальное собеседо вание, проверка домашни х

4	Примеры дискретных и математических моделей в экономике	Изучение литературы, составление компьютерных программ. Типы лекций.	10	Используйте литературу [2], [5]	заданий, контроль ная работа Индивид уальное собеседо вание, проверка домашни х заданий
5	Вычисление константы Фейгенбаума	Изучение литературы, разработка индивидуального проекта. Что такое тетрадная форма обучения.	8	Используйте литературу [3], [4]	Индивид уальное собеседо вание, тестиров ание экспертн ой системы
6	Понятие хаоса и примеры хаотических отображений	Изучение литературы, составление компьютерных программ. Характеристика проблемной лекции.	8	Используйте литературу [3], [6]	Коллокви ум
7	Комплексные дискретные и математические модели	Анализ сайтов. Характристика дистанционного обучения	10	Используйте литературу [4], [7]	реферат
8	Множества Жюлиа и множество Мандельброта	Разработка алгоритмов построения множеств Жюлиа и множества Мандельброта.	8	Используйте литературу [1], [4]	Индивид уальное собеседо вание, проверка домашни х заданий, контроль ная работа

6.2. Методические рекомендации для выполнения курсовых работ

Тематика курсовых работ

- 1. Построение множеств Жюлиа полиномов Чебышева.
- 2. Вычисление константы Фейгенбаума некоторых рациональных функций.
- 3. Приложения теории катастроф в физике.
- 4. Преобразование пекаря.
- 5. Преобразование ЭНО.

6.3. Вопросы к зачету:

- 1. Приведите примеры нелинейных отображений.
- 2. Построение итераций нелинейных отображений в Маткаде (сам раб.).
- 3. Построение итераций нелинейных отображений с помощью программирования (сам раб.).
 - 4. Построение аттрактора тентообразной функции (сам. Раб.).
 - 5. Понятие хаоса. Примеры хаотических отображений.
- 6. Существенная зависимость от начальных условий, как компонента хаоса.
 - 7. Транзитивность, как компонента хаоса.
 - 8. Всюду плотность периодических точек как компонента хаоса.
 - 9. Двоичное преобразование пекаря.
 - 10. Множества Жюлиа и их построение.
 - 11. Структура неподвижных точек комплексного полинома $f(z) = z^2 + c$.
 - 12. Структура неподвижных точек комплексного полинома $f(z) = z^2 + c$

7. Перечень основной и дополнительной литературы, необходимой для освоения лиспиплины

а) основная:

- . *Секованов В. С.* Элементы теории фрактальных множеств: учебное пособие. 5-е издание. М.: Книжный дом «ЛИБРОКОМ», 2013. 248 с.
- 2. Секованов В. С. Что такое фрактальная геометрия? М.: ЛЕНАНД, 2016. 272 с. (Синергетика: от прошлого к будущему. №75; науку ВСЕМ! Шедевры науно-популярной литературы (физика). №114.).
- 3. Секованов В. С. Элементы теории дискретных динамических систем: Учебное пособие. СПб.: Издательство «Лань», 2017. 180 с.
- 4. Бабенко А. С. Секованов В. С. Введение в нелинейную динамику: учебнометодич. пособие. Кострома: КГУ им. Н. А. Некрасова, 2010.-60 с.
- 5. Бабенко А. С. Непрерывные математические модели: учебно-методич. пособие. Кострома: КГУ им. Н. А. Некрасова, 2013. 52 с.

б) дополнительная:

6. Секованов В.С. Фрактальная геометрия. Преподавание, задачи, алгоритмы, синергетика, эстетика, приложения:Учебное пособие. – СПб:Издательство «Лань», 2019 г. –180 с.

- 7. Секованов В.С. Формирование креативной личности студента вуза при обучении математике на основе новых информационных технологий. Кострома: КГУ им. Н. А. Некрасова 2004. 231с.
- 8. Секованов В.С. Методическая система формирования креативности студента университета в процессе обучения фрактальной геометрии. Кострома: КГУ им. Н. А. Некрасова, 2006. 279 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

1. Библиотека ГОСТов. Все ГОСТы, [Электронный ресурс],

URL:http://vsegost.com/

Электронные библиотечные системы:

- 1. ЭБС Университетская библиотека онлайн http://biblioclub.ru
- 2. ЭБС «Лань» https://e.lanbook.com
- 3. 9EC «ZNANIUM.COM» http://znanium.com

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория 228E для лекционных, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оборудование: посадочные места 16, рабочее место преподавателя. Имеется мультимедиа — компьютер (переносной) с проектором. Установлено 16 компьютеров.

Аудитория 227E для лекционных, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оборудование: посадочные места 15, рабочее место преподавателя. Имеется мультимедиа — компьютер (переносной) с проектором. Установлено 15 компьютеров.

Лицензионное программное обеспечение:

Windows 8 Pro лицензия 01802000875623 постоянная 1-шт.; LibreOffice 5.0, лицензия GNU LGPL; Microsoft Visual Studio 2013, лицензия; PTC MathCad Prime 1.0, лицензия; Java SE 1.8, лицензия GNU LGPL; Pascal ABC.NET, лицензия GNU LGPL;

Свободно распространяемое программное обеспечение:

Языки программирования С#, Turbo Pascal -8, математический пакет Mathad - 14, офисный пакет.