Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Моделирование электронных схем

Направление подготовки <u>01.03.02 «Прикладная математика и информатика»</u> Направленность ««Прикладная математика и информатика»»

Квалификация (степень) выпускника: бакалавр

Кострома 2019

Рабочая программ	иа дисциплин	ы «Моделирован	ие электронных	схем» разра	юотана в
соответствии с Ф	Редеральным	государственным	образовательным	стандартом	высшего
образования по на	правлению по	одготовки 01.03.02	Прикладная матем	матика и инф	орматика
(уровень подготов	ки бакалавриа	ат), утверждённым	приказом №9 от 1	0.01.2018 г.	
Разработал:	Легот	ин Денис Леонидов	зич, доцент, к.фм	.н., доцент	

подпись
Рецензент: ______ Сухов Андрей Константинович, к.ф.-м.н., доцент подпись

УТВЕРЖДЕНО:

На заседании кафедры прикладной математики и информационных технологий Протокол заседания кафедры № 12 от 22.05.2019 г.

Заведующий кафедрой прикладной математики и информационных технологий Секованов Валерий Сергеевич, д.п.н, к.ф.-м.н., профессор КГУ

1. Цели и задачи освоения дисциплины

Цель дисциплины: познакомить студентов с устройством и назначением элементов электронных цепей и схем и происходящими в них процессами.

Задачи дисциплины:

- знакомство с электрофизическими процессами, происходящими в электронных цепях;
- знакомство с основными радиотехническими элементами, применяющимися в современных электронно-вычислительных устройствах;
- приобретение студентами знаний о правилах построения схем электрических цепей;
- знакомство с принципами работы элементной базы, применяемой для построения схем цифровой логики.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен:

знать:

- основные законы электрических явлений;
- базовые элементы электрических цепей, их свойства и способы применения;
- базовые элементы интегральных схем, их схемотехнические реализации и принципы работы;
- представление информации при обработке её электронными схемами.

уметь:

- применять методы моделирования электронных схем при использовании специализированных программных пакетов;
- решать задачи по выбору параметров электротехнических элементов для построения электрических цепей.

владеть:

– Техникой моделирования электронных схем.

освоить компетенции:

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и естественных наук, и использовать их в профессиональной деятельности.

Индикаторы компетенции:

- ОПК-1.1. Обладает фундаментальными знаниями в области высшей математики, знает основные законы физики и теоретические методы анализа физических явлений.
- ОПК-1.2. Умеет решать стандартные задачи математического анализа, алгебры, аналитической геометрии, дискретной математики,

дифференциальных уравнений, теории вероятностей и других дисциплин высшей математики.

ОПК-1.3. Имеет навыки проведения компьютерного вычислительного эксперимента с визуализацией полученных результатов расчётов.

3. Место дисциплины в структуре ОП ВО

Данная дисциплина изучается в 4 семестре и входит в обязательную часть учебного плана подготовки бакалавров прикладной математики и информатики. «Моделирование электронных схем» знакомят студентов с устройством и назначением элементов электронных цепей и схем, а также учат пониманию происходящих в них процессах. В ходе изучения этой дисциплины студенты приобретают навыки конструирования и отладки цифровых цепей с заданными характеристиками. Данный предмет является базой для дальнейшего изучения таких дисциплин, как «Основы ассемблера», «Системные платформы и оболочки» и «Нейросетевое моделирование».

4. Объем дисциплины «Моделирование электронных схем» 4.1. Объем дисциплины в зачётных единицах с указанием академических (астрономических) часов и виды учебной работы

Виды учебной работы,	Очная форма	Очно-заочная	Заочная
Общая трудоемкость в зачетных единицах	3		
Общая трудоемкость в часах	108		
Аудиторные занятия в часах, в том числе:	56		
Лекции	28		
Практические занятия	-		
Лабораторные занятия	28		
Самостоятельная работа в часах	52		
Форма промежуточной аттестации	Зачёт 4 сем.		

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма	Очно-заочная	Заочная
Лекции	28		
Практические занятия	0		
Лабораторные занятий	28		
Консультации	1		
Зачет/зачеты	•		
Экзамен/экзамены	-		
Курсовые работы	-		
Bcero	56		

5. Содержание дисциплины «Моделирование электронных схем», структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

	5.1 1ематическии план учебнои дисциплины					
No	Название раздела,	Всего	Аудитор	ные зан	пития	Самостоятельная
	темы	з.е/час	Практ.	Лекц.	Лаб.	
1	Типы электрических схем. Печатные платы.	0.33/12	-	1	1	10
2	Основные понятия и законы электрических явлений.	0.28/11	-	3	-	8
3	Простейшие элементы электрических цепей.	0.61/21	-	5	6	10
4	Полупроводниковые приборы.	0.61/22	-	7	7	8
5	Цифровые микросхемы. Базовые логические элементы.	0.56/20	-	5	7	8
6	Логические операционные узлы в цифровых устройствах.	0.61/22		7	7	8
	Итого:	3/108	0	28	28	52

5.2. Содержание:

Тема 1. Типы электрических схем. Печатные платы. Условные графические обозначения УГО. Блок схемы: назначение, правила чтения. Принципиальные электрические схемы и их назначение. Монтажные схемы и их назначение. Однослойные и многослойные печатные платы, способы изготовления. Способы монтажа радиотехнических элементов.

- **Тема 2. Основные понятия и законы электрических явлений.** Носители электрического заряда. Понятие разности потенциалов, напряжение, единицы измерения. Электрический ток понятие, единицы измерения. Постоянный и переменный ток. Амплитудные и действующие значения переменного тока и напряжения. Сопротивление, закон Ома для участка цепи. Электрическая мощность, единицы измерения, рассеиваемая тепловая мощность, системы охлаждения.
- Простейшие элементы Тема 3. электрических цепей. Резистор, сопротивление, единицы измерения параметров, УГО и внешний вид. сопротивления. Назначение примеры Переменные резисторов, использования. Конденсатор, емкость, единицы измерения параметров, УГО Электролитические конденсаторы. внешний вид. конденсаторов, примеры использования. Катушка, индуктивность, единицы параметров, УГО и внешний вид. Назначение индуктивности, примеры использования. Трансформатор. Колебательный RLC контур, вынужденные и свободные колебания, резонанс. Реактивное сопротивление, RLC фильтры.
- **Тема 4. Полупроводниковые приборы.** Электроны и дырки Р-N переход. Диоды, принцип работы, УГО и внешний вид. ВАХ диода. Назначение различных типов диодов и примеры использования. Выпрямительный мост. Биполярные NPN и PNP транзисторы, принцип работы, УГО и внешний вид. Режимы работы: отсечки, активный, насыщения. Назначение и примеры использования. Схемы ключа, мультивибратора, блокинг генератора. Полевые МОП транзисторы Р и N канальные. Встроенные и индуцированные каналы. Принцип работы, УГО и внешний вид. Назначение различных типов МОП транзисторов и примеры использования. Схема ключа на МОП транзисторе.
- **Тема 5. Цифровые микросхемы. Базовые логические элементы.** Базовые логические элементы И, ИЛИ, НЕ их УГО и таблицы истинности. Реализация логических элементов на микросхемах SN7400 (К155ЛА3), SN7402 (К155ЛЕ1), SN74LS55 (К555ЛР4) их УГО и таблицы истинности. Назначение и пример использования простейший маячок на микросхеме SN7400 (К155ЛА3).
- **Тема 6. Логические операционные узлы в цифровых устройствах.** Сумматоры. Четвертьсумматор. Полусумматор. Полный одноразрядный двоичный сумматор. УГО и таблицы истинности. Реализация полного сумматора на микросхеме SN7480 (К155ИМ1). Компараторы. УГО и таблицы истинности. Реализация четырехразрядного компаратора на микросхеме CD4585A (К564ИП2).
 - 6. Методические материалы для обучающихся по освоению дисциплины «Моделирование электронных схем»

6.1. Самостоятельная работа обучающихся по дисциплине

№ п/п	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнению задания	Форма контроля
1	Типы электрических схем. Печатные платы.	Изучение литературы	10	Используйте рекомендованную литературу и интернет источники	Устный опрос
2	Основные понятия и законы электрических явлений.	Изучение литературы, интернет сайтов	8	Используйте рекомендованную литературу и интернет источники	Устный опрос
3	Простейшие элементы электрических цепей.	Компьютерное моделирование электрических схем	10	Используйте рекомендованную литературу и интернет источники	Проверка работающих моделей
4	Полупроводниковые приборы.	Компьютерное моделирование электрических схем	8	Используйте рекомендованную литературу и интернет источники	Проверка работающих моделей
5	Цифровые микросхемы. Базовые логические элементы.	Компьютерное моделирование электрических схем	8	Используйте рекомендованную литературу и интернет источники	Проверка работающих моделей
6	Логические операционные узлы в цифровых устройствах.	Компьютерное моделирование электрических схем	8	Используйте рекомендованную литературу и интернет источники	Проверка работающих моделей

6.2. Тематика и задания для лабораторных занятий

№	Тема	Задания для лабораторных
п/п		работ
1	Типы электрических схем.	Изучение работы эмулятора для
	Печатные платы.	построения и проверки
		электрических схем.
2	Простейшие элементы	Омический делитель. Построение

	электрических цепей.	RLС фильтров. Исследование
	John Parison Administration	резонансных характеристик
		колебательного контура.
		Моделирование работы
		трансформатора.
3	Полупроводниковые приборы.	Исследование ВАХ диода.
]	Полупроводниковые приобры.	Построение преобразователя
		напряжения ~220 - =5В. Создание
		-
		ключа на биполярном
		транзисторе. Создание усилителя
		на биполярном транзисторе.
		Мультивибратор. Блокинг
		генератор. Исследование работы
		МОП транзистора на примере
		схемы ключа.
4	Цифровые микросхемы. Базовые	Исследование работы логических
	логические элементы.	элементов микросхем SN7400
		(К155ЛА3), SN7402 (К155ЛЕ1),
		SN74LS55 (К555ЛР4). Создание
		простейшего маячка на
		микросхеме SN7400 (К155ЛА3).
5	Логические операционные узлы	Исследование работы и таблиц
	в цифровых устройствах.	истинности четвертьсумматора,
		полусумматора и полного
		сумматора реализованных в
		серийных микросхемах SN7480
		(К155ИМ1). Создание и
		исследование работы схемы
		компаратора на базе CD4585A
		(К564ИП2) для сравнения двух
		восьмиразрядных чисел.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины «Моделирование электронных схем»

а) Основная литература

- 1. Гусев, В. Г. Электроника и микропроцессорная техника: Учеб. для студ. высш. учеб. заведений / В. Г. Гусев, Ю. М. Гусев. 3-е изд., перераб. и доп. М.: Высш. шк., 2004. 790 с.: ил. Библиогр.: с. 786-790. ISBN 5-06-004271-5: 188.78.
- 2. Ефимов, И. Е. Основы микроэлектроники: учебник / И. Е. Ефимов, И. Я. Козырь. Изд. 3-е, стер. СПб.: Лань, 2008. 383, [1] с.: ил. (Учебники для вузов. Специальная литература). Библиогр.: с. 381-382. ISBN 978-5-8114-0866-5: 509.80.

б) дополнительная литература:

- 3. Ярочкина, Г. В. Радиоэлектроника: Рабочая тетрадь: Учеб. пособие / Г. В. Ярочкина. М.: Академия, 2003. 112 с. (Профессиональное образование).- (Радиоэлектроника). Библиогр.: с. 109. ISBN 5-7695-1275-X: 53.25.
- 4. Фромберг, Э. М. Конструкции на элементах цифровой техники / Э. М. Фромберг. М.: Горячая линия-Телеком, 2002. 264 с.: ил. (Массовая радиобиблиотека; Вып. 1249). Библиогр.: с. 260-262. ISBN 5-93517-077-9: 52.50.
- 5. Сушков, А. Д. Вакуумная электроника: Физико-технические основы: Учеб. пособие для студ. вузов / А. Д. Сушков. СПб.: Лань, 2004. 464 с.: ил. (Учебники для вузов. Специальная литература). Предм. указ.: с. 456-457. Библиогр.: с. 458-459. ISBN 5-8114-0530-8: 286.94.
- 6. Лозовский, Владимир Николаевич. Нанотехнологии в электронике : введение в специальность : [учеб. пособие для студ. высш. учеб. заведений] : рекомендовано УМО / Лозовский, Владимир Николаевич, Г. С. Константинова, С. В. Лозовский. 2-е изд., испр. СПб. : Лань, 2008. 336 с. : ил. (Учебники для вузов. Специальная литература). Библиогр.: с. 319. Предм. указ.: с. 320-323. ISBN 978-5-8114-0827-6 : 393.00.
- 7. Ямпольский, В. С. Основы автоматики и электронно-вычислительной техники: [учеб. пособие для студентов физ.-мат. фак.пед. ин-тов]: допущено Госкомитетом СССР по нар. образованию / В. С. Ямпольский. М.: Просвещение, 1991. 223 с.: ил. (Учебное пособие для педагогических институтов). Библиогр.: с. 213-214. Предм. указ.: с. 220-221. ISBN 5-09-002802-8: 2.00.
- 8. Комолова, З. П. Популярная электроника: пособие по обучению чтению на англ. яз.: [учеб. пособие для радиотехн. и приборостр. спец. вузов]: допущено М-вом высш. и сред. спец. образования СССР / З. П. Комолова, В. П. Новоселецкая, Н. В. Новикова. М.: Высш. школа, 1988. 158 с.: ил. 0.25.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Библиотека КГУ http://library.ksu.edu.ru/
- 2.Национальный открытый университет ИНТУИТ (www.intuit.ru)

Электронные библиотечные системы:

- 3. ЭБС «Лань»
- 4. ЭБС «Университетская библиотека online»
- 5. ЭБС «Znanium»

9. Описание материально-технической базы, необходимой для

осуществления образовательного процесса по дисциплине

Для проведения занятий по дисциплине необходим компьютерный класс. Необходимое программное обеспечение:

пакет эмулятора для построения и эмуляции работы электронных схем типа LTspiceIV.