МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Тетрадная форма обучения

Направление подготовки – 01.04.02 «Прикладная математика и информатика»

Направленность «Математическое моделирование и программирование»

Квалификация (степень) выпускника: магистр

Рабочая программа дисциплины Тетрадная форма обучения по направлению подготовки 01.04.02 Прикладная математика и информатика, направленность Математическое моделирование и программирование разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования — магистратура по направлению подготовки 01.04.02 Прикладная математика и информатика, приказ N=13 от 10 января 2018 г.

Разработал: Секованов Валерий Сергеевич, профессор, д.п.н., к.фм.н.
Рецензент: Благовещенский Владимир Валерьевич, д. фм. н, профессор КГУ
УТВЕРЖДЕНО:
На заседании кафедры прикладной математики и информационных технологий
Протокол заседания кафедры №12 от 22 мая 2019 г.
Заведующий кафедрой прикладной математики и информационных технологий Секованов Валерий Сергеевич, профессор, д.п.н., к.фм.н.

ПРОГРАММА ПЕРЕУТВЕРЖДЕНА:

1. Цели и задачи освоения дисциплины

Изучение дисциплины «Тетрадная форма обучения» (часть, формируемая участниками образовательных отношений) важно для магистров направления подготовки «Прикладная математика и информатика», поскольку с помощью ее формируются компетенции, нацеленные на работу в вузе (школе) в качестве преподавателя (учителя) математики и информатики и руководителя разработки программного обеспечения.

При изучении дисциплины «Тетрадная форма обучения» формируется общепрофессиональная компетенция:

ПК-3. Способен к руководству научно-исследовательской, проектной, учебно-профессиональной и иной деятельностью обучающихся по программам бакалавриата, специалитета, магистратуры или ДПП;

Индикаторы ПК-3:

ПК-3.1.

Знать: основные требования и технологии научно-исследовательской, проектной и и учебно-профессиональной деятельности обучающихся по программам бакалавриата, специалитета или ДПП

ПК-3.2.

Уметь: руководить научно-исследовательской, проектной и учебно-профессиональной деятельностью обучающихся

ПК-3.3.

Иметь навыки: руководства учебно-профессиональной деятельностью обучающихся

Магистры углубленно изучают непрерывные и дискретные динамические, реализуют новые математические методы и знакомятся с идеями синергетики — нового бурно развивающегося научного направления.

При изучении выше указанной дисциплины магистры в рамках тетрады знакомятся с одним из универсальных методов решения различных задач (исследование аттракторов нелинейных отображений, исследование фракталов и хаоса в динамических системах, создание математических моделей и др.), что положительно на развитие их общекультурных компетенций влияет профессиональных компетенций. Парадигма изучения дисциплины «Тетрадная форма обучения» возникла в связи с потребностью решения различных задач производственно-технологической деятельности. Она основана на идее создания математической объекта природы, процесса деятельности модели использованием ИКТ. Это позволит будущему специалисту в области прикладной математики и информатики сконцентрироваться на изучении и использовании которые при исследовании математических методов И ИКТ, (аттрактор преобразования Эно, роль пекаря, компьютерный эксперимент, компьютерная модель и др.).

Цель изучения дисциплины: «Тетрадная форма обучения» — подготовка будущего преподавателя математики для работы в школе и вузе.

Задачи изучения дисциплины: – изучить принципы и методы обучения математике в рамках тетьрады;

- изучить формы и средства обучения математике в рамках тетрады;
- типы творчесой деятельности в рамках тетрады;
- владеть современнми методами обучения математике;
- знать принципы организации тетрады.

Магистры, завершившие изучение дисциплины «Тетрадная форма обучения» должны знать:

- что такое тетрада
- принципы организации тетрады
- синергетический подход в образовании.

Магистры, завершившие изучение дисциплины «Тетрадная форма обучения» должны уметь:

- проводить занятия в рамках тетрады;
- организовывать различные виды творческой деятельности;
- руководить работой тетрады.

Магистры, завершившие изучение дисциплины «Тетрадная форма обучения» должны владеть при выполнении ММИЗ:

- способами проектной и инновационной деятельности в образовании;
- различными средствами коммуникации в профессиональной педагогической деятельности;
- методами обучения в рамках тетрады.

Магистры, завершившие изучение дисциплины «Тетрадная форма обучения» должны освоить индикаторы компетенции ПК-3: ПК-3.1, ПК-3.2, ПК-3.3, с помощью которых формируется компетенция ПК-3: способен к руководству научно-исследовательской, проектной, учебно-профессиональной и иной деятельностью обучающихся по программам бакалавриата, специалитета, магистратуры или ДПП.

Индикаторы компетенции ПК-3:

ПК-3.1.

Знать: основные требования и технологии научно-исследовательской, проектной и учебно-профессиональной деятельности обучающихся по программам бакалавриата, специалитета или ДПП

Уметь: руководить научно-исследовательской, проектной и учебнопрофессиональной деятельностью обучающихся

ПК-3.3.

Иметь навыки: руководства учебно-профессиональной деятельностью обучающихся

2. Перечень планируемых результатов обучения по дисциплине

«Многоэтапное математико-информационное задание»:

В результате освоения дисциплины обучающийся должен: сформировать индикаторы компетенций ПК-1 и ПК-3:

На базе ПК-1.1 — ПК-1.3 и ПК-3.1 — ПК- 3.3 обучающийся должен освоить компетенцию ПК-1: способен к разработке научно-методических и учебнометодических материалов, обеспечивающих реализацию программ профессионального обучения, СПО или ДПО и компетенрцию ПК-3: способен к руководству научно-исследовательской, проектной, учебно-профессиональной и иной деятельностью обучающихся по программам бакалавриата, специалитета, магистратуры или ДПП

3. Место дисциплины в структуре ОП ВО

«Тетрадная форма обучения» изучается в блоке ФДТ Дисциплина факультативы в третьем семестре. Для изучения дисциплины «Тетрадная форма необходимы знания, умения и навыки, формируемые изучаемыми магистрами, изучаемыми в первом и втором семестрах дисциплинами «Современные компьютерные технологии», «Теория устойчивости», «Современные проблемы прикладной математики информатики», И «Квазилинейное фрактальное моделирование», «Методика преподавания математических дисциплин», «Методика преподавания информационных дисциплин».

Дисциплина «Тетрадная форма обучения» интегрирует с дисциплинами «Методика преподавания информационных дисциплин», «Распределенные вычисления на кластере», «Педагогическая практика», «Дискретные математические модели», «Непрерывные математические модели», «Методика обучения математических дисциплин» Данная интеграция включает в себя логическую и содержательную взаимосвязь, поскольку при ее изучении используются как математические методы, так и ИКТ.

Компетенции ПК-3 дополнительно формируется педагогической практикой, «Многоэтамные математико-информационные задания», «Методика обучения web-программирования».

4. Объем дисциплины

4.1. Объем дисциплины в зачетных единицах с указанием академических часов и виды учебной работы

Виды учебной работы,	Очная форма	Очно-заочная	Заочная
Общая трудоемкость в зачетных единицах	2		
Общая трудоемкость в часах	72		
Аудиторные занятия в часах, в том числе:	24		
Лекции	12		
Практические занятия	12		
Лабораторные занятия	_		
Самостоятельная работа в часах	48		
Форма промежуточной аттестации	зачет		

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная	Очно-заочная	Заочная
	форма		
Лекции	12		
Практические занятия	12		
Лабораторные занятий	_		
Консультации			
Зачет/зачеты			
Экзамен/экзамены			
Курсовые работы			
Курсовые проекты			
Всего	24		

5. Содержание дисциплины «Тетрадная форма обучения», структурированное по темам, с указанием количества часов и видов занятий

5.1. Тематический план дисциплины «Нелинейная динамика»

№		Всего	Аудиторные занятия				
п/п	Наименование темы	з.е./ч	Bce	Лекци	Прак	Лабо	Самостоят.
			ГО	И	Т.	p.	работа
1	Принципы и методы используемые при организации тетрады.	0.5/18	6	3	3	_	12
2	Формы и средства тетрадной формы обучения	0.5/18	6	3	3	_	12
3	Разработка заданий	0.5/18	6	3	3	_	12

	для тетрадной формы обучения						
4		0,5/18	6	3	3	_	12
	ИТОГО:	72	24	12	12	0	48

5.2. Содержание:

Тема 1. Принципы и методы используемые при организации тетрады.

Определяются принципы и методы при организации тетрады.

- **Тема 2. Формы и средства тетрадной формы обучения.** Определяются формы и средства тетрадной формы обучения.
- **Тема 3. Разработка заданий для тетрадной формы обучения.** Разрабатываются задания для тетрадной формы обучения.

Тема 4. Выполнение заданий в рамках тетрады. Порядок выполнения заданий в рамках тетрады.

6. Методические материалы для обучающихся по освоению дисциплины

6.1. Самостоятельная работа обучающихся по дисциплине «Дискретные математические модели»

№	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнен. задания	Формы контроля
1	Принципы и методы используемые при организации тетрады	Изучение теоретического материала. Принципы дидактики	12	Используйте литературу [1], [4]	Устный опрос
2	Формы и средства тетрадной формы обучения	Изучение литературы, составление компьютерных программ. Методы дидактики	12	Используйте литературу [2], [5]	Реферат
3	Разработка заданий для тетрадной формы обучения	Изучение литературы, составление компьютерных программ, решение задач. Формы обучения.	12	Используйте литературу [2], [5]	Индивид уальное собеседо вание, проверка домашни х заданий, контроль

					ная работа
4	Выполнение заданий в рамках тетрады	Изучение литературы, составление компьютерных программ. Типы лекций.	12	Используйте литературу [2], [5]	Индивид уальное собеседо вание, проверка домашни х заданий

6.2. Методические рекомендации для выполнения курсовых работ Тематика курсовых работ

- 1. Изучение тем в рамках тетрады темы «Множества Жюлиа рациональных функций».
- 2. Изучение тем в рамках тетрады темы «Тентообразная функция».
- 3. Изучение тем в рамках тетрады темы «Кошка Арнольда».

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины

а) основная:

- . *Секованов В. С.* Элементы теории фрактальных множеств: учебное пособие. 5-е издание. М.: Книжный дом «ЛИБРОКОМ», 2013. 248 с.
- 2. Секованов В. С. Что такое фрактальная геометрия? М.: ЛЕНАНД, 2016. 272 с. (Синергетика: от прошлого к будущему. №75; науку ВСЕМ! Шедевры науно-популярной литературы (физика). №114.).
- 3. Секованов В. С. Элементы теории дискретных динамических систем: Учебное пособие. СПб.: Издательство «Лань», 2017. 180 с.
- 4. Бабенко А. С. Секованов В. С. Введение в нелинейную динамику: учебнометодич. пособие. Кострома: КГУ им. Н. А. Некрасова, 2010.-60 с.
- 5. Бабенко А. С. Непрерывные математические модели: учебно-методич. пособие. Кострома: КГУ им. Н. А. Некрасова, 2013. 52 с.

б) дополнительная:

- 6. Секованов В.С. Фрактальная геометрия. Преподавание, задачи, алгоритмы, синергетика, эстетика, приложения:Учебное пособие. СПб:Издательство «Лань», 2019 г. –180 с.
- 7. Секованов В.С. Формирование креативной личности студента вуза при обучении математике на основе новых информационных технологий. Кострома: КГУ им. Н. А. Некрасова 2004. 231с.
- 8. Секованов В.С. Методическая система формирования креативности студента университета в процессе обучения фрактальной геометрии. Кострома: КГУ им. Н. А. Некрасова, 2006. 279 с.

8. Перечень ресурсов информационно-телекоммуникационной сети

«Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

1. Библиотека ГОСТов. Все ГОСТы, [Электронный ресурс],

URL:http://vsegost.com/

Электронные библиотечные системы:

- 1. ЭБС Университетская библиотека онлайн http://biblioclub.ru
- 2. ЭБС «Лань» https://e.lanbook.com
- 3. 3EC «ZNANIUM.COM» http://znanium.com

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория 228E для лекционных, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оборудование: посадочные места 16, рабочее место преподавателя. Имеется мультимедиа — компьютер (переносной) с проектором. Установлено 16 компьютеров.

Аудитория 227E для лекционных, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оборудование: посадочные места 15, рабочее место преподавателя. Имеется мультимедиа — компьютер (переносной) с проектором. Установлено 15 компьютеров.

Лицензионное программное обеспечение:

Windows 8 Pro лицензия 01802000875623 постоянная 1-шт.; LibreOffice 5.0, лицензия GNU LGPL; Microsoft Visual Studio 2013, лицензия; PTC MathCad Prime 1.0, лицензия; Java SE 1.8, лицензия GNU LGPL; PascalABC.NET, лицензия GNU LGPL;

Свободно распространяемое программное обеспечение:

Языки программирования С#, Turbo Pascal -8, математический пакет Mathad - 14, офисный пакет.