МИНОБРНАУКИ Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Костромской государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основы вычислительной техники

Направление подготовки «(09.03.02) Информационные системы и технологии»

Все направленности

Квалификация (степень) выпускника: бакалавр

Рабочая программа дисциплины «Основы вычислительной техники» разработана в соответствии с Федеральным государственным образовательным стандартом по направлению 09.03.02 Информационные системы и технологии (уровень бакалавриата), утвержден приказом Министерства образования и науки РФ № 926 от 19.09.17.

Разработал:

Чувиляева А.С., к.т.н., доцент

подпись

Рецензент:

Дружинина А.Г., к.т.н., доцент

подпись

Директор Института автоматизированных систем и технологий

Лустгартен Ю.Л., к.т.н., доцент

подпись

УТВЕРЖДЕНО:

На заседании кафедры Информационных систем и технологий Протокол заседания кафедры № 8 от 26.05.2020 г. Заведующий кафедрой Информационных систем и технологий

Киприна Л.Ю., к.т.н., доцент

Побпись

На заседании кафедры Информатики и вычислительной техники Протокол заседания кафедры №10 от 20 июня 2020 г. Заведующий кафедрой Информатики и вычислительной техники

Денисов А.Р., д.т.н., доцент

подпись

1. Цели и задачи освоения дисциплины

Цель дисциплины — получение базовых компетенций теоретического и экспериментального исследования в профессиональной деятельности с применением общеинженерных знаний и методов вычислительной техники.

Задачи дисциплины:

- формирование у обучающихся базовых знаний в области системотехники и вычислительной техники;
- формирование у обучающихся умений решать стандартные профессиональные задачи с применением методов системотехники и вычислительной техники;
- формирование у обучающихся навыков теоретического и экспериментального исследования объектов профессиональной деятельности с применением общеинженерных знаний и методов вычислительной техники;
- формирование у обучающихся базовых навыков инсталляции аппаратного обеспечения информационных и автоматизированных систем.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен знать:

- основы электротехники, электроники, системотехники;
- основы вычислительной техники.

Уметь:

решать стандартные профессиональные задачи с применением методов системотехники и вычислительной техники.

Владеть:

- навыками теоретического и экспериментального исследования объектов профессиональной деятельности;
- навыками инсталляции аппаратного обеспечения информационных и автоматизированных систем.

Освоить компетенции:

- ОПК-1 способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- ОПК-5 способность инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем.

Индикаторы освоенности компетенции:

- ОПК-1.1. Знать: основы высшей математики, физики, основы вычислительной техники и программирования;
- ОПК-1.2. Уметь: решать стандартные профессиональные задачи с применением естественнонаучных и обще-инженерных знаний, методов математического анализа и моделирования;
- ОПК-1.3. Иметь навыки: теоретического и экспериментального исследования объектов профессиональной деятельности;
- ОПК-5.1. Знать: основы системного администрирования, администрирования СУБД, современные стандарты информационного взаимодействия систем;
 - ОПК-5.2. Уметь: выполнять параметрическую настройку ИС;
- ОПК-5.3. Иметь навыки: инсталляции программного и аппаратного обеспечения информационных и автоматизированных систем.

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к дисциплинам обязательной части Блока 1 учебного плана. Изучается во 2 семестре обучения.

4. Объем дисциплины (модуля)

4.1. Объем дисциплины в зачетных единицах с указанием академических (астрономических) часов и виды учебной работы

Виды учебной работы,	Очная форма		
Общая трудоемкость в зачетных единицах	2		
Общая трудоемкость в часах	72		
Аудиторные занятия в часах, в том числе:	32		
Лекции	16		
Практические занятия	16		
Лабораторные занятия			
Самостоятельная работа в часах	40		
Форма промежуточной аттестации	зачет		

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма
Лекции	16
Практические занятия	16
Лабораторные занятий	
Консультации	
Зачет/зачеты	
Экзамен/экзамены	
Курсовые работы	
Курсовые проекты	
Всего	32

5. Содержание дисциплины (модуля), структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

		Всего з.е/час	Аудиторн		
№	Название раздела, темы		Лек ц.	Лаб.	Самостоятельная работа
1	Раздел 1. Введение. Основы	0,62/22	6	6	10
	кодирования информации				
	Раздел 2. Основы электроники	0,5/18	4	4	10
	и цифровой схемотехники				
2	Раздел 3. Основы	0,88/32	6	6	20
	вычислительной техники				
	Итого:	2/72	16	16	40

5.2. Содержание:

Раздел 1. Введение. Основы обработки информации

Понятие вычислительной техники. Цели и задачи дисциплины. Основные задачи кодирования. Классификация и основные характеристики кодов. Понятие оптимального кода. Общая характеристика алгоритмов сжатия данных. Алгоритм построения кода Шеннона-Фано. Код Хаффмана. Источники помех и ошибок в каналах связи. Модель двоичного симметричного канала. Классификация и характеристики помехоустойчивых кодов. Основные принципы помехоустойчивого кодирования. Понятие кодового расстояния (расстояние Хэмминга). Коды Хэмминга.

Раздел 2. Физические основы вычислительной техники

Электрический ток. Электрические цепи. Параметры элементов электрических цепей. Закон Ома. Законы Кирхгофа. Резисторы и конденсаторы в электрических цепях. Электрические сигналы. Аналоговые, дискретные, импульсные и цифровые сигналы. Преобразование сигналов.

Раздел 3. Основы вычислительной техники

Элементная база современных электронных устройств. Понятие электроники и микроэлектроники. Интегральные схемы. Электронные устройства. Основы цифровой электроники. Микропроцессорные средства

Основные понятия и этапы развития вычислительной техники. Устройство и характеристики основных компонентов компьютера. Порты и интерфейсы. Внешние и периферийные устройства компьютера. Современная вычислительная техника.

6. Методические материалы для обучающихся по освоению дисциплины

6.1. Самостоятельная работа обучающихся по дисциплине (модулю)

№ п/п	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнению	Форма контроля
				задания	
1	Раздел 1. Введение. Основы	1. Повторение	22	[1.1, 1.2, 2.1-2.4]	Устная

	кодирования информации	пройденного			Отчет
2	Раздел 2. Основы электроники и цифровой схемотехники	материала. 2. Подготовка к практической	18	[1.1, 1.2, 2.1-2.4]	Реферат
3	Раздел 3. Основы вычислительной техники	работе. 3. Создание отчета по практической работе. 4. Написание реферата по теме.		[1.1, 1.2, 2.1-2.4]	

6.2. Тематика и задания для практических занятий

- 1. Оптимальное кодирование. Разработка программы для построения оптимального кода.
- 2. Эффективное кодирование. Разработка программы для построения эффективного кода.
- 3. Помехоустойчивое кодирование. Понятие о кодовом расстоянии. Разработка программы для построения помехоустойчивого кода.
- 4. Правила оформления схем цифровых устройств. Общие правила оформления схем. Условные графические обозначения на электрических схемах. Условные графические обозначения элементов цифровой техники.
 - 5. Проверка Законов Ома и Кирхгофа.
 - 6. Моделирование и анализ работы электрических схем средствами эмулятора.
- 7. Моделирование и анализ работы цифровых схем средствами эмулятора (Qucs, Logisim, MultimediaLogic).

6.3. Тематика и задания для лабораторных занятий Не предусмотрено

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

1) основная литература:

- 1. Куль, Т.П. Основы вычислительной техники: учебное пособие / Т.П.Куль. Минск: РИПО, 2018. -244 с.: ил., табл., схем. -Библиогр.: с. 227-228 -ISBN 978-985-503-812-3; То же [Электронный ресурс]. -URL:http://biblioclub.ru/index.php?page=book&id=497477.
- 2. Егоров, Д.Л. Теория вычислительных процессов и структур: учебное пособие / Д.Л.Егоров; Министерство образования и науки РФ, Казанский национальный исследовательский технологический университет. -Казань: КНИТУ, 2018. -92 с.: схем., табл., ил. -Библиогр. в кн. -ISBN 978-5-7882-2378-0; То же [Электронный ресурс]. URL:http://biblioclub.ru/index.php?page=book&id=500683.

2) дополнительная литература:

1. Спицын, В.Г. Информационная безопасность вычислительной техники : учебное пособие / В.Г.Спицын ; Министерство образования и науки Российской Федерации, Томский

Государственный Университет Систем Управления и Радиоэлектроники (ТУСУР). -Томск : Эль Контент, 2011. -148 с. : ил.,табл., схем. -ISBN 978-5-4332-0020-3 ; То же [Электронный ресурс]. -URL:http://biblioclub.ru/index.php?page=book&id=208694.

- 2. Партыка, Т.Л. Вычислительная техника : учеб. пособие для средн. проф. образования / Т.Л. Партыка, И.И. Попов. -Москва : Форум -Инфра-М, 2007. -608 с.: ил. (Профессиональное образование). -МО РФ спец.-Электротехника. -ЕН. -ISBN 5-91134-050-X. -ISBN 5-16-002873-0 : 279.00.1.
- 3. Путилин, А. Б. Вычислительная техника и программирование в измерительных информационных системах : учеб. пособие для вузов / А. Б. Путилин. -Москва : Дрофа, 2006. -448 с.: ил. -(Высш. образование). -МО РФ. -ЕН. -ISBN 5-358-01235-4 : 200.00.+1
- 4. Исаева М.В., Информатика [учебное пособие] // М.В.Исаева, А.С. Чувиляева Кострома: Изд—во КГТУ, 2010.-72 с

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

- 1. Федеральный портал «Российское образование»;.
- 2. Официальный сайт министерства образования и науки Российской Федерации. Электронные библиотечные системы:
- 1. ЭБС «Лань».
- 2. ЭБС «Университетская библиотека online».
- 3. ЭБС «Znanium».
- 4.ЭБС «ИНТУИТ».

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего
самостоятельной работы		документа
ауд. Е-326 (занятия лекционного типа, групповые консультации, промежуточная аттестация)	Лекционная аудитория. Число посадочных мест — 80. Имеется: мультимедиа — проектор с компьютером, выход в интернет; усилитель; колонки.	Лицензионное программное обеспечение не используется
ауд. Е-327 (лабораторные занятия, индивидуальные консультации, промежуточная аттестация, самостоятельная работа обучающихся)	Компьютерный класс. Число посадочных мест — 16. Число мест, оборудованных компьютерами — 8 с выходом в интернет. Имеется: мультимедиа — проектор с компьютером; колонки.	Лицензионное программное обеспечение не используется

Проведение занятий лекционного типа, практических занятий, индивидуальных и групповых консультаций, промежуточной аттестации возможно в других аудиториях КГУ, имеющих аналогичное техническое и программное оснащение.