МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет» (КГУ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕОРИЯ ЦИФРОВЫХ СИСТЕМ УПРАВЛЕНИЯ

Направление подготовки/специальность: 27.03.04 Управление в технических системах

Направленность/специализация: Информационное и техническое обеспечение цифровых систем управления

Квалификация выпускника: бакалавр

Кострома 2021

соответствии с Федеральным(и) государственным(и) образовательным(и) стандартом(ами) № 871 от 31.07.2020
Разработал: (ФИО), должность, ученая степень, ученое звание
доцент кафедры АМТ КГУ, кандидат технических наук Воронова Л.В.
Рецензенты: (ФИО), должность, организация
доцент кафедры АМТ КГУ, кандидат технических наук Олоничев В.В.
ПРОГРАММА УТВЕРЖДЕНА:
Заведующий кафедрой профессор, доктор технических наук Староверов Б.А.:
Протокол заседания кафедры №9_ от 12.05.2021 г.
ПРОГРАММА ПЕРЕУТВЕРЖДЕНА:

На заседании кафедры Автоматики и микропроцессорной техники:

Протокол заседания кафедры № ___ от _____ 20 __ г.

(ФИО), ученая степень, ученое звание

Рабочая программа дисциплины Теория автоматического управления разработана в

1. Цели и задачи освоения дисциплины

Цель дисциплины:

состоит в овладении общими принципами построения математических моделей объектов и систем автоматического управления (САУ), методами анализа качества и синтеза САУ

Задачи дисциплины:

- обеспечить подготовку студентов в области автоматизации технологических процессов и производств, технических систем;
- научить студентов решать задачи, возникающие в процессе проектирования, анализа и синтеза систем автоматизации с применением информационного и аппаратно-программного обеспечения и пакетов прикладных программ;
- ознакомить студентов с принципами построения САУ и навыками эксплуатационного обслуживания.

2. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен освоить компетенции: OПК-3

Код и содержание индикаторов компетенции ОПК-3:

Способность использовать фундаментальные знания для решения базовых задач управления в технических системах с целью совершенствования в профессиональной деятельности

знать:

- основные понятия и определения теории автоматического управления и принципы построения контуров автоматического управления;
- получение передаточных функций объектов управления и правила структурных преобразований функциональных схем САУ;
- критерии оценки устойчивости и методы получения статической точности;
- типовые линейные регуляторы и методики их настройки;
- принципы функционирования и методы получения математических моделей нелинейных процессов и объектов автоматизации и управления;
- точные и приближенные методы расчета нелинейных систем управления;
- основы синтеза оптимальных систем автоматизации и управления.

уметь:

- представлять в различных формах математические модели линейных и нелинейных процессов и объектов автоматизации и управления;
- рассчитывать точность и устойчивость линейных и нелинейных систем управления;
- синтезировать оптимальные законы управления техническими системами;
- применять изучаемые методики оценки качества работы замкнутых систем автоматического управления, решать типовые задачи синтеза САУ;
- использовать в профессиональной деятельности различные виды математических пакетов прикладных программ.

владеть:

- навыками практического использования результатов математического моделирования.
- навыками получения математических моделей линейных и нелинейных объектов управления;
- аналитическими методами анализа и синтеза линейных и нелинейных систем и с использованием вычислительной техники;
- основными методами синтеза оптимальных законов управления процессами и объектами

автоматизации;

- способностью анализировать и выбирать оптимальные алгоритмы решения задач параметрического и структурного синтеза;
- вычислительной техникой для расчетов линейных, нелинейных и оптимальных процессов управления техническими системами.

Индикаторы освоенности компетенций:

ИОПКЗ.1. Знает основные понятия и определения теории автоматического управления, принципы построения контуров управления автоматическими и автоматизированными системами, правила структурных преобразований функциональных схем САУ, виды соединений звеньев, критерии оценки устойчивости, математические методы получения моделей объектов управления и других элементов САУ, типовые линейные регуляторы и методики их настройки.

ИОПКЗ.2 Умеет применять изучаемые методики оценки качества работы замкнутых систем автоматического управления, решать типовые задачи, использовать в профессиональной деятельности различные виды математических пакетов прикладных программ.

ИОПКЗ.З Владеет способностью анализировать и выбирать оптимальные алгоритмы решения задач параметрического и структурного синтеза, навыками практического использования результатов математического моделирования.

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к Блоку 1 обязательной части учебного плана. Изучается в 6 семестре(ах) обучения.

Изучение дисциплины основывается на ранее освоенных дисциплинах/практиках: основы алгоритмизации, информационно-коммуникационные технологии, математика, прикладное программирование.

Изучение дисциплины является основой для освоения последующих дисциплин: программирование на языке Python для систем управления, средства и методы управления в робототехнических системах, средства автоматизации управления, управляющие системы реального времени, научно-исследовательская работа, выпускная квалификационная работа.

4. Объем дисциплины

4.1. Объем дисциплины в зачетных единицах с указанием академических часов и виды учебной работы

Виды учебной работы,	Очная форма	Очно-заочная	Заочная
Общая трудоемкость в зачетных единицах	5		
Общая трудоемкость в часах	180		
Аудиторные занятия в часах, в том числе:	_		
Лекции	32		
Практические занятия	_		
Лабораторные занятия	32		
Практическая подготовка			
Самостоятельная работа в часах	77,75		
Форма промежуточной аттестации	экзамен		

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная	Очно-заочная	Заочная
	форма		
Лекции	32		
Практические занятия			
Лабораторные занятия	32		
Консультации	2		
Зачет/зачеты			
Экзамен/экзамены	0,35		
Курсовые работы			
Курсовые проекты			
Практическая подготовка			
Всего	66,35		

5 Содержание дисциплины, структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1 Тематический план учебной дисциплины

No	Название раздела, темы	Всего	Аудиторные занятия			Самостоя
		час	Лекц.	Пра	Лаб.	тельная раб
1	Введение. Основные определения и термины ТАУ.	15	4		3	10
2	Математическое описание элементов СУ	18	6		6	10
3	Структурная схема СУ Правила структурных преобразований СУ	15	6		3	10
4	Понятие о точности управления в установившемся режиме.	14	4		4	10
5	Устойчивость CAУ	13	4		5	10
6	Оценка качества процесса регулирования и управления	13	4		5	10
7	Синтез САУ с заданными свойствами	14	4		6	17,6
	ИКР	2,35				
	Экзамен	<u>36</u>				
	Всего	180	32		32	77,6

5.2. Содержание:

Раздел 1. Введение. Основные определения и термины ТАУ.

Основные термины и определения. Основные задачи ТАУ. Принципы построения СУ. Классификации СУ.

Раздел 2. Математическое описание элементов СУ.

Понятие о звене СУ и его статической характеристике. Описание объектов управления. Модели «вход-выход». Понятие передаточной функции. Частотные характеристики объектов управления. Типовые динамические звенья и их свойства.

Раздел 3. Структурная схема СУ. Правила структурных преобразований СУ.

Параллельное, последовательное и встречно-параллельное соединение звеньев. Перенос сумматора через звено. Понятия местной и главной обратной связи.

Раздел 4. Понятие о точности управления в установившемся режиме.

Разомкнутые статические САУ. Замкнутые статические и астатические САУ. Следящие астатические САУ.

Раздел 5. Устойчивость САУ

Понятие устойчивости: математическое и физическое. Алгебраические критерии устойчивости Рауса, Гурвица. Принцип аргумента, частотные критерии устойчивости Михайлова, Найквиста.

Раздел 6. Оценка качества процесса регулирования и управления

Критерии качества процессов регулирования: временные, частотные, корневые, интегральные. Методы задания статических и динамических свойств СУ: типовыми переходными процессами, типовыми передаточными функциями, частотными характеристиками, интегральными критериями.

Раздел 7. Синтез САУ с заданными свойствами

Методы повышения точности СУ. Синтез инвариантных СУ, технические ограничения реализации. Синтез СУ с помощью обратных связей (по желаемой передаточной функции), жесткие и гибкие обратные связи.

6. Методические материалы для обучающихся по освоению дисциплины

6.1. Самостоятельная работа обучающихся по дисциплине (модулю)

№ п/п	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнению задания	Форма контроля
1	Введение. Основные определения и термины ТАУ.	Изучение лекционного материала.	10	 Изучение лекционного материала: Внимательно изучите слайды просмотрите слайды презентации лекции Уточните в справочной литературе непонятные термины Кратко сформулируйте основные положения, отметьте аргументацию автора Примените обозначенные методы к своим программным разработкам 	Контрольные тестовые задания
2	Математическое описание элементов СУ.	Изучение лекционного материала.	10	Выполнение заданий для самостоятельной работы по заданной теме: - прорешайте задачи к	Контрольная работа 1

				контрольной работе: 1. Вывод передаточной функции четырехполюсника 2. ПФ типовых динамических звеньев 3. Структурные преобразования - результаты проверьте и проанализируйте [1][2] - оформите отчет по лабораторной работе, ответьте на вопросы	
3	Структурная схема СУ. Правила структурных преобразований СУ.	Решение практических задач	10	Пункт 3-4 КП, оформить ПЗ	Контроль выполнения отчета осуществляется индивидуально или групповой беседой по ключевым моментам работы
4	Понятие о точности управления в установившемся режиме.	Оформление отчетов по лабораторной работе Расчет коэффициента УУ К1 в КП	10	Оформить лабораторную работу в соответствии с требованиями, указанными в учебнометодическом пособии [2] - Представить отчет по лабораторной работе к установленному сроку [1] [2] Пункт 5 КП	Контрольная работа 2
5	Устойчивость САУ	Анализ устойчивости исходной системы по ЛАЧХ и ЛФЧХ	10	Оформить лабораторную работу в соответствии с требованиями, указанными в учебнометодическом пособии [2] - Представить отчет по лабораторной работе к установленному сроку [1] [2] Оформить 6 пункт ПЗ КП	Контрольная работа 2
6	Оценка качества процесса регулирования и управления	Оформление отчетов по лабораторной работе Расчет показателей качества регулирования в КП по варианту	10	Оформить лабораторную работу в соответствии с требованиями, указанными в учебнометодическом пособии [2] - Представить отчет по лабораторной работе к установленному сроку [1] [2] Оформить 8-9 пункт КП в пояснительной записке	8-9 пункт курсового проекта
7	Синтез САУ с	Изучение	17,6	Изучение лекционного	7 пункт
	заданными	материалов	5	материала:	курсового

свойс	твами	лекции Решение задач	– Внимательно изучите проекта слайды презентации лекции
		30,401	или файл лекции на
			кафедральном внутреннем
			сервере
			– Уточните в справочной
			литературе непонятные
			термины
			– Выделите главное,
			составьте план.
			Кратко сформулируйте
			основные положения
			текста, отметьте
			аргументацию автора[3]

6.2. Тематика и задания для практических занятий

Нет

6.3. Тематика и задания для лабораторных занятий

Лабораторная работа 1. Исследование типовых динамических звеньев. Методические указания [1].

Лабораторные работы 2. Исследование точности в установившемся режиме. Методические указания [2].

Лабораторная работа 3. Исследование устойчивости систем автоматического регулирования. Методические указания [3].

Лабораторная работа 4. Исследование работы типовых линейных регуляторов. Методические указания [4].

6.4. Методические рекомендации для выполнения курсовых работ (проектов)

Нет

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины

а) основная:

- 1. Гайдук А.Р., Беляев В.Е., Пьявченко Т.А Теория автоматического управления в примерах и задачах с решениями в МАТLAB: учеб. [Электронный ресурс]: учеб. пособие Электрон. дан. Изд-во: Лань, 2017. 464 с. Режим доступа: https://e.lanbook.com/book/90161.
- 2. Ощепков А.Ю. Системы автоматического управления: применение, моделирование в MATLAB [Электронный ресурс] : учеб. Электрон. дан. Изд-во : Лань, 2013. 208 с. Режим доступа: https://e.lanbook.com/book/5848.

б) дополнительная:

- 3. Теория автоматического управления : учебное пособие/Б.И. Коновалов, Ю.М. Лебедев [Электронный ресурс] : учеб. пособие Электрон. дан. Изд-во: Лань, 2016. 224 с. Режим доступа: https://e.lanbook.com/book/71753.
- 4. Теория автоматического управления: задачи и решения: учебное пособие/Л.Д. Певзнер, [Электронный ресурс]: учеб. пособие Электрон. дан. Изд-во: Лань, 2016. 604 с. Режим доступа: https://e.lanbook.com/book/755161.

в) методические указания

1. Федюкин В.М., Староверов Б.А. Исследование типовых динамических звеньев /[Электронный ресурс]: Аннотированный каталог СПО в КГТУ: Кострома, — КГТУ, — РИО, 1998. — Режим доступа: http://ksu.edu.ru/nauchnaya-biblioteka.html

- 2. Федюкин В.М., Староверов Б.А. Исследование точности в установившемся режиме /[Электронный ресурс]: Аннотированный каталог СПО в КГТУ: Кострома, КГТУ, РИО, 1998. Режим доступа: http://ksu.edu.ru/nauchnaya-biblioteka.html
- 3. Федюкин В.М., Староверов Б.А. Исследование устойчивости систем автоматического регулирования /[Электронный ресурс]: Аннотированный каталог СПО в КГТУ: Кострома, —КГТУ, —РИО, 1998. Режим доступа: http://ksu.edu.ru/nauchnaya-biblioteka.html
- 4. Федюкин В.М., Староверов Б.А. Исследование работы типовых линейных регуляторов /[Электронный ресурс]: Аннотированный каталог СПО в КГТУ: Кострома, —КГТУ, —РИО, 1998. Режим доступа: http://ksu.edu.ru/nauchnaya-biblioteka.html 5.Воронова Л.В., Федюкин В.М. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОГО ПРОЕКТА Анализ и синтез линейных систем автоматического регулирования [Электронный ресурс]: Аннотированный каталог СПО в КГТУ: Кострома, —КГТУ, —РИО, 2010. Режим доступа: http://ksu.edu.ru/nauchnaya-biblioteka.html.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Информационно-образовательные ресурсы:

- 1. Федеральный портал «Российское образование»;
- 2. Официальный сайт министерства образования и науки Российской Федерации Электронные библиотечные системы:
- 1. ЭБС Университетская библиотека онлайн http://biblioclub.ru
- 2. ЭБС «Лань» https://e.lanbook.com
- 3. 3EC «ZNANIUM.COM» http://znanium.com

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционная аудитория должна быть оснащена презентационным оборудованием (персональный компьютер, мультимедийный проектор, экран, программа для создания и проведения презентаций).

Компьютерный класс:

Процессор

Pentium 4, 1 ГГц и выше.

Операционная система

Windows XP или более поздняя версия.

Память 1 ГБ ОЗУ

Дисковое пространство 40 ГБ

Монитор Super VGA (800 ♦ 600) или более высокое разрешение с 256 цветами.

Программное обеспечение:

- MS Office
- SMath Studio (MathCad 15 при наличии лицензии)
- Scilab 2.7 (MATLAB при наличии лицензии)
- WinMikal (разработанное в университете ПО, не требующее лицензии)